Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 175(3): 299-312, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38030385

RESUMO

Extracellular vesicles (EVs) are important mediators of intercellular communication. However, the methods available for distinguishing the heterogeneity of secreted EVs and isolating and purifying them are limited. This study introduced a HiBiT-tag to detect various EV markers, including CD63, CD9, Epidermal Growth Factor Receptor (EGFR), Flotilin1, and Syndecan-1, and investigated whether these marker-containing vesicles were capable of binding to differently charged column carriers. Four column carriers, Diethylaminoethyl (DEAE), Capto Adhere, Blue and Heparin, showed affinity for CD63 containing EVs, but their elution patterns varied. Furthermore, we observed that the elution patterns of the EV markers differed among vesicles with distinct surface charges when a DEAE column was used. This suggests that the incorporation of EV markers varied between these vesicles. The markers showed different subcellular localizations, indicating that the site of vesicle formation may contribute to the production of vesicles with varying charges and marker incorporation. These findings may have implications for the development of methods to purify homogeneous EVs, which could be useful in EV-mediated drug delivery systems.


Assuntos
Etanolaminas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicação Celular , Transporte Biológico
2.
J Virol ; 97(10): e0042623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830820

RESUMO

IMPORTANCE: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has caused a global public health crisis. The E protein, a structural protein found in this virus particle, is also known to be a viroporin. As such, it forms oligomeric ion channels or pores in the host cell membrane. However, the relationship between these two functions is poorly understood. In this study, we showed that the roles of E protein in virus particle and viroporin formation are distinct. This study contributes to the development of drugs that inhibit SARS-CoV-2 virus particle formation. Additionally, we designed a highly sensitive and high-throughput virus-like particle detection system using the HiBiT tag, which is a useful tool for studying the release of SARS-CoV-2.


Assuntos
Proteínas do Envelope de Coronavírus , SARS-CoV-2 , Humanos , COVID-19 , Lisossomos/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , Motivos de Aminoácidos , Liberação de Vírus
3.
Vaccine ; 39(22): 2976-2982, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33926749

RESUMO

In the activation of cell-mediated adaptive immune responses that play major roles in the elimination of virus-infected or tumor cells, it is important that dendritic cells present antigen peptides on major histocompatibility complex (MHC) class I molecules and activate pathogen-specific cytotoxic T lymphocytes (CTL). As exogenous peptide antigens are generally presented on MHC class II but not class I, the development of a method for exogenous antigen delivery that facilitates MHC class I presentation is necessary for a potentially effective vaccine that is expected to provoke cell-mediated adaptive immune responses. Here, we developed extracellular vesicles that incorporate antigenic proteins by utilizing endosomal sorting complexes required for transport (ESCRT)-mediated vesicle formation pathway. Furthermore, we proved that these vesicles could deliver their contents to the cytoplasm of dendritic cells and activate antigen-specific CTLs. These technologies could be applied to the development of novel CTL-inducing peptide vaccines.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vesículas Extracelulares , Apresentação de Antígeno , Células Dendríticas , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe II , Peptídeos , Linfócitos T Citotóxicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA