Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
JTO Clin Res Rep ; 2(4): 100164, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34590014

RESUMO

INTRODUCTION: Relapsed SCLC is characterized by therapeutic resistance and high mortality rate. Despite decades of research, mechanisms responsible for therapeutic resistance have remained elusive owing to limited tissues available for molecular studies. Thus, an unmet need remains for molecular characterization of relapsed SCLC to facilitate development of effective therapies. METHODS: We performed whole-exome and transcriptome sequencing of metastatic tumor samples procured from research autopsies of five patients with relapsed SCLC. We implemented bioinformatics tools to infer subclonal phylogeny and identify recurrent genomic alterations. We implemented immune cell signature and single-sample gene set enrichment analyses on tumor and normal transcriptome data from autopsy and additional primary and relapsed SCLC data sets. Furthermore, we evaluated T cell-inflamed gene expression profiles in neuroendocrine (ASCL1, NEUROD1) and non-neuroendocrine (YAP1, POU2F3) SCLC subtypes. RESULTS: Exome sequencing revealed clonal heterogeneity (intertumor and intratumor) arising from branched evolution and identified resistance-associated truncal and subclonal alterations in relapsed SCLC. Transcriptome analyses further revealed a noninflamed phenotype in neuroendocrine SCLC subtypes (ASCL1, NEUROD1) associated with decreased expression of genes involved in adaptive antitumor immunity whereas non-neuroendocrine subtypes (YAP1, POU2F3) revealed a more inflamed phenotype. CONCLUSIONS: Our results reveal substantial tumor heterogeneity and complex clonal evolution in relapsed SCLC. Furthermore, we report that neuroendocrine SCLC subtypes are immunologically cold, thus explaining decreased responsiveness to immune checkpoint blockade. These results suggest that the mechanisms of innate and acquired therapeutic resistances are subtype-specific in SCLC and highlight the need for continued investigation to bolster therapy selection and development for this cancer.

3.
Mol Cancer Ther ; 19(3): 847-857, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911531

RESUMO

The fibroblast growth factor receptor (FGFR) signaling pathway is aberrantly activated in approximately 15% to 20% of patients with intrahepatic cholangiocarcinoma. Currently, several FGFR kinase inhibitors are being assessed in clinical trials for patients with FGFR-altered cholangiocarcinoma. Despite evidence of initial responses and disease control, virtually all patients eventually develop acquired resistance. Thus, there is a critical need for the development of innovative therapeutic strategies to overcome acquired drug resistance. Here, we present findings from a patient with FGFR2-altered metastatic cholangiocarcinoma who enrolled in a phase II clinical trial of the FGFR inhibitor, infigratinib (BGJ398). Treatment was initially effective as demonstrated by imaging and tumor marker response; however, after 8 months on trial, the patient exhibited tumor regrowth and disease progression. Targeted sequencing of tumor DNA after disease progression revealed the FGFR2 kinase domain p.E565A and p.L617M single-nucleotide variants (SNV) hypothesized to drive acquired resistance to infigratinib. The sensitivities of these FGFR2 SNVs, which were detected post-infigratinib therapy, were extended to include clinically relevant FGFR inhibitors, including AZD4547, erdafitinib (JNJ-42756493), dovitinib, ponatinib, and TAS120, and were evaluated in vitro Through a proteomics approach, we identified upregulation of the PI3K/AKT/mTOR signaling pathway in cells harboring the FGFR2 p.E565A mutation and demonstrated that combination therapy strategies with FGFR and mTOR inhibitors may be used to overcome resistance to FGFR inhibition, specific to infigratinib. Collectively, these studies support the development of novel combination therapeutic strategies in addition to the next generation of FGFR inhibitors to overcome acquired resistance in patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão Oncogênica/genética , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Apoptose , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/genética , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Mutação , Prognóstico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Células Tumorais Cultivadas
4.
Artigo em Inglês | MEDLINE | ID: mdl-31371345

RESUMO

Cholangiocarcinoma is a highly aggressive and lethal malignancy, with limited treatment options available. Recently, FGFR inhibitors have been developed and utilized in FGFR-mutant cholangiocarcinoma; however, resistance often develops and the genomic determinants of resistance are not fully characterized. We completed whole-exome sequencing (WES) of 11 unique tumor samples obtained from a rapid research autopsy on a patient with FGFR-fusion-positive cholangiocarcinoma who initially responded to the pan-FGFR inhibitor, INCB054828. In vitro studies were carried out to characterize the novel FGFR alteration and secondary FGFR2 mutation identified. Multisite WES and analysis of tumor heterogeneity through subclonal inference identified four genetically distinct cancer cell populations, two of which were only observed after treatment. Additionally, WES revealed an FGFR2 N549H mutation hypothesized to confer resistance to the FGFR inhibitor INCB054828 in a single tumor sample. This hypothesis was corroborated with in vitro cell-based studies in which cells expressing FGFR2-CLIP1 fusion were sensitive to INCB054828 (IC50 value of 10.16 nM), whereas cells with the addition of the N549H mutation were resistant to INCB054828 (IC50 value of 1527.57 nM). Furthermore, the FGFR2 N549H secondary mutation displayed cross-resistance to other selective FGFR inhibitors, but remained sensitive to the nonselective inhibitor, ponatinib. Rapid research autopsy has the potential to provide unprecedented insights into the clonal evolution of cancer throughout the course of the disease. In this study, we demonstrate the emergence of a drug resistance mutation and characterize the evolution of tumor subclones within a cholangiocarcinoma disease course.


Assuntos
Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Autopsia , Linhagem Celular Tumoral , Evolução Clonal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Sequenciamento do Exoma
5.
Prostate Cancer Prostatic Dis ; 22(4): 624-632, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31043681

RESUMO

BACKGROUND: The fibroblast growth factor receptor (FGFR) signaling pathway is activated in multiple tumor types through gene amplifications, single base substitutions, or gene fusions. Multiple small molecule kinase inhibitors targeting FGFR are currently being evaluated in clinical trials for patients with FGFR chromosomal translocations. Patients with novel gene fusions involving FGFR may represent candidates for kinase inhibitors. METHODS: A targeted RNA-sequencing assay identified a KLK2-FGFR2 fusion gene in two patients with metastatic prostate cancer. NIH3T3 cells were transduced to express the KLK2-FGFR2 fusion. Migration assays, Western blots, and drug sensitivity assays were performed to functionally characterize the fusion. RESULTS: Expression of the KLK2-FGFR2 fusion protein in NIH3T3 cells induced a profound morphological change promoting enhanced migration and activation of downstream proteins in FGFR signaling pathways. The KLK2-FGFR2 fusion protein was determined to be highly sensitive to the selective FGFR inhibitors AZD-4547, BGJ398, JNJ-42756943, the irreversible inhibitor TAS-120, and the non-selective inhibitor Ponatinib. The KLK2-FGFR2 fusion did not exhibit sensitivity to the non-selective inhibitor Dovitinib. CONCLUSIONS: Importantly, the KLK2-FGFR2 fusion represents a novel target for precision therapies and should be screened for in men with prostate cancer.


Assuntos
Calicreínas/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Carcinogênese/genética , Movimento Celular/genética , Células HEK293 , Humanos , Calicreínas/antagonistas & inibidores , Calicreínas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Células NIH 3T3 , Medicina de Precisão/métodos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de RNA , Transfecção
6.
Oncotarget ; 10(3): 277-288, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30719225

RESUMO

Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare cancer of dendritic cell origin that lacks a standardized treatment approach. Here, we performed genomic characterization of metastatic IDCS through whole exome sequencing (WES) of tumor tissues procured from a patient who underwent research autopsy. WES was also performed on a treatment-naïve tumor biopsy sample obtained from prior surgical resection. Our analyses revealed ultra-hypermutation, defined as >100 mutations per megabase, in this patient's cancer, which was further characterized by the presence of three distinct mutational signatures including UV radiation and APOBEC signatures. To characterize clonal heterogeneity, we used the bioinformatics tool Canopy to leverage single nucleotide and copy number variants to catalog six subclones across various metastatic tumors. Truncal alterations, defined as being present in all clonal tumor cell populations, in this patient's cancer include point mutations in TP53 and CDKN2A and amplifications of c-KIT and APOBEC3A-H, which are likely driver mutations. In summary, we have performed genomic characterization evaluating tumor mutational burden (TMB) and heterogeneity in a patient with metastatic IDCS. Despite ultra-hypermutation, this patient's cancer was not responsive to treatment with PD-1 inhibition. Our results underscore the importance of characterizing clonal heterogeneity in TMB-high cancers.

7.
Oncotarget ; 8(44): 75822-75833, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100271

RESUMO

Multiplex somatic testing has emerged as a strategy to test patients with advanced cancer. We demonstrate our analytic validation approach for a gene hotspot panel and real-time prospective clinical application for any cancer type. The TruSight Tumor 26 assay amplifies 85 somatic hotspot regions across 26 genes. Using cell line and tumor mixes, we observed that 100% of the 14,715 targeted bases had at least 1000x raw coverage. We determined the sensitivity (100%, 95% CI: 96-100%), positive predictive value (100%, 95% CI: 96-100%), reproducibility (100% concordance), and limit of detection (3% variant allele frequency at 1000x read depth) of this assay to detect single nucleotide variants and small insertions and deletions. Next, we applied the assay prospectively in a clinical tumor sequencing study to evaluate 174 patients with metastatic or advanced cancer, including frozen tumors, formalin-fixed tumors, and enriched peripheral blood mononuclear cells in hematologic cancers. We reported one or more somatic mutations in 89 (53%) of the sequenced tumors (167 passing quality filters). Forty-three of these patients (26%) had mutations that would enable eligibility for targeted therapies. This study demonstrates the validity and feasibility of applying TruSight Tumor 26 for pan-cancer testing using multiple specimen types.

8.
J Mol Diagn ; 19(5): 682-696, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28802831

RESUMO

Kinase gene fusions are important drivers of oncogenic transformation and can be inhibited with targeted therapies. Clinical grade diagnostics using RNA sequencing to detect gene rearrangements in solid tumors are limited, and the few that are available require prior knowledge of fusion break points. To address this, we have analytically validated a targeted RNA sequencing assay (OSU-SpARKFuse) for fusion detection that interrogates complete transcripts from 93 kinase and transcription factor genes. From a total of 74 positive and 36 negative control samples, OSU-SpARKFuse had 93.3% sensitivity and 100% specificity for fusion detection. Assessment of repeatability and reproducibility revealed 96.3% and 94.4% concordance between intrarun and interrun technical replicates, respectively. Application of this assay on prospective patient samples uncovered OLFM4 as a novel RET fusion partner in a small-bowel cancer and led to the discovery of a KLK2-FGFR2 fusion in a patient with prostate cancer who subsequently underwent treatment with a pan-fibroblast growth factor receptor inhibitor. Beyond fusion detection, OSU-SpARKFuse has built-in capabilities for discovery research, including gene expression analysis, detection of single-nucleotide variants, and identification of alternative splicing events.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Quinases/genética , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Processamento Alternativo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-ret/genética , Controle de Qualidade , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Análise de Sequência de DNA , Fluxo de Trabalho
9.
Mol Cancer Ther ; 16(4): 614-624, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28255027

RESUMO

Activation of FGFR signaling through mutations, amplifications, or fusions involving FGFR1, 2, 3, or 4 is seen in multiple tumors, including lung, bladder, and cholangiocarcinoma. Currently, several clinical trials are evaluating the role of novel FGFR inhibitors in solid tumors. As we move forward with FGFR inhibitors clinically, we anticipate the emergence of resistance with treatment. Consequently, we sought to study the mechanism(s) of acquired resistance to FGFR inhibitors using annotated cancer cell lines. We identified cancer cell lines that have activating mutations in FGFR1, 2, or 3 and treated them chronically with the selective FGFR inhibitor, BGJ398. We observed resistance to chronic BGJ398 exposure in DMS114 (small-cell lung cancer, FGFR1 amplification) and RT112 (urothelial carcinoma, FGFR3 fusion/amplification) cell lines based on viability assays. Reverse-phase protein array (RPPA) analysis showed increased phosphorylation of Akt (T308 and S473) and its downstream target GSK3 (S9 and S21) in both the resistant cell lines when compared with matching controls. Results of RPPA were confirmed using immunoblots. Consequently, the addition of an Akt inhibitor (GSK2141795) or siRNA was able to restore sensitivity to BGJ398 in resistant cell lines. These data suggest a role for Akt pathway in mediating acquired resistance to FGFR inhibition. Mol Cancer Ther; 16(4); 614-24. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/genética , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mutação , Neoplasias/tratamento farmacológico , Fosforilação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
10.
JCO Precis Oncol ; 20172017.
Artigo em Inglês | MEDLINE | ID: mdl-29850653

RESUMO

PURPOSE: Microsatellite instability (MSI) is a pattern of hypermutation that occurs at genomic microsatellites and is caused by defects in the mismatch repair system. Mismatch repair deficiency that leads to MSI has been well described in several types of human cancer, most frequently in colorectal, endometrial, and gastric adenocarcinomas. MSI is known to be both predictive and prognostic, especially in colorectal cancer; however, current clinical guidelines only recommend MSI testing for colorectal and endometrial cancers. Therefore, less is known about the prevalence and extent of MSI among other types of cancer. METHODS: Using our recently published MSI-calling software, MANTIS, we analyzed whole-exome data from 11,139 tumor-normal pairs from The Cancer Genome Atlas and Therapeutically Applicable Research to Generate Effective Treatments projects and external data sources across 39 cancer types. Within a subset of these cancer types, we assessed mutation burden, mutational signatures, and somatic variants associated with MSI. RESULTS: We identified MSI in 3.8% of all cancers assessed-present in 27 of tumor types-most notably adrenocortical carcinoma (ACC), cervical cancer (CESC), and mesothelioma, in which MSI has not yet been well described. In addition, MSI-high ACC and CESC tumors were observed to have a higher average mutational burden than microsatellite-stable ACC and CESC tumors. CONCLUSION: We provide evidence of as-yet-unappreciated MSI in several types of cancer. These findings support an expanded role for clinical MSI testing across multiple cancer types as patients with MSI-positive tumors are predicted to benefit from novel immunotherapies in clinical trials.

11.
Oncotarget ; 8(5): 7452-7463, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27980218

RESUMO

In current clinical practice, microsatellite instability (MSI) and mismatch repair deficiency detection is performed with MSI-PCR and immunohistochemistry. Recent research has produced several computational tools for MSI detection with next-generation sequencing (NGS) data; however a comprehensive analysis of computational methods has not yet been performed. In this study, we introduce a new MSI detection tool, MANTIS, and demonstrate its favorable performance compared to the previously published tools mSINGS and MSISensor. We evaluated 458 normal-tumor sample pairs across six cancer subtypes, testing classification performance on variable numbers of target loci ranging from 10 to 2539. All three computational methods were found to be accurate, with MANTIS exhibiting the highest accuracy with 98.91% of samples from all six diseases classified correctly. MANTIS displayed superior performance among the three tools, having the highest overall sensitivity (MANTIS 97.18%, MSISensor 96.48%, mSINGS 76.06%) and specificity (MANTIS 99.68%, mSINGS 99.68%, MSISensor 98.73%) across six cancer types, even with loci panels of varying size. Additionally, MANTIS also had the lowest resource consumption (<1% of the space and <7% of the memory required by mSINGS) and fastest running times (49.6% and 8.7% of the running times of MSISensor and mSINGS, respectively). This study highlights the potential utility of MANTIS in classifying samples by MSI-status, allowing its incorporation into existing NGS pipelines.


Assuntos
Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Instabilidade de Microssatélites , Neoplasias/genética , Algoritmos , Predisposição Genética para Doença , Humanos , Neoplasias/patologia , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fluxo de Trabalho
12.
J Vis Exp ; (114)2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27585245

RESUMO

RNA sequencing (RNAseq) is a versatile method that can be utilized to detect and characterize gene expression, mutations, gene fusions, and noncoding RNAs. Standard RNAseq requires 30 - 100 million sequencing reads and can include multiple RNA products such as mRNA and noncoding RNAs. We demonstrate how targeted RNAseq (capture) permits a focused study on selected RNA products using a desktop sequencer. RNAseq capture can characterize unannotated, low, or transiently expressed transcripts that may otherwise be missed using traditional RNAseq methods. Here we describe the extraction of RNA from cell lines, ribosomal RNA depletion, cDNA synthesis, preparation of barcoded libraries, hybridization and capture of targeted transcripts and multiplex sequencing on a desktop sequencer. We also outline the computational analysis pipeline, which includes quality control assessment, alignment, fusion detection, gene expression quantification and identification of single nucleotide variants. This assay allows for targeted transcript sequencing to characterize gene expression, gene fusions, and mutations.


Assuntos
Análise de Sequência de RNA/métodos , Sequência de Bases , Perfilação da Expressão Gênica/métodos , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/análise , RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Ribossômico/análise , RNA Ribossômico/genética
13.
J Mol Diagn ; 17(5): 554-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26320871

RESUMO

Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations.


Assuntos
Bases de Dados Genéticas , Mutação , Neoplasias/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Drogas em Investigação/uso terapêutico , Genes Neoplásicos , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/epidemiologia
14.
Hum Mutat ; 36(9): 903-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26110913

RESUMO

Next-generation sequencing has aided characterization of genomic variation. While whole-genome sequencing may capture all possible mutations, whole-exome sequencing remains cost-effective and captures most phenotype-altering mutations. Initial strategies for exome enrichment utilized a hybridization-based capture approach. Recently, amplicon-based methods were designed to simplify preparation and utilize smaller DNA inputs. We evaluated two hybridization capture-based and two amplicon-based whole-exome sequencing approaches, utilizing both Illumina and Ion Torrent sequencers, comparing on-target alignment, uniformity, and variant calling. While the amplicon methods had higher on-target rates, the hybridization capture-based approaches demonstrated better uniformity. All methods identified many of the same single-nucleotide variants, but each amplicon-based method missed variants detected by the other three methods and reported additional variants discordant with all three other technologies. Many of these potential false positives or negatives appear to result from limited coverage, low variant frequency, vicinity to read starts/ends, or the need for platform-specific variant calling algorithms. All methods demonstrated effective copy-number variant calling when evaluated against a single-nucleotide polymorphism array. This study illustrates some differences between whole-exome sequencing approaches, highlights the need for selecting appropriate variant calling based on capture method, and will aid laboratories in selecting their preferred approach.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico , Composição de Bases , Linhagem Celular Tumoral , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Biblioteca Gênica , Genômica/métodos , Humanos , Hibridização de Ácido Nucleico/métodos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Software
15.
J Mol Diagn ; 17(1): 64-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25528188

RESUMO

Targeted, capture-based DNA sequencing is a cost-effective method to focus sequencing on a coding region or other customized region of the genome. There are multiple targeted sequencing methods available, but none has been systematically investigated and compared. We evaluated four commercially available custom-targeted DNA technologies for next-generation sequencing with respect to on-target sequencing, uniformity, and ability to detect single-nucleotide variations (SNVs) and copy number variations. The technologies that used sonication for DNA fragmentation displayed impressive uniformity of capture, whereas the others had shorter preparation times, but sacrificed uniformity. One of those technologies, which uses transposase for DNA fragmentation, has a drawback requiring sample pooling, and the last one, which uses restriction enzymes, has a limitation depending on restriction enzyme digest sites. Although all technologies displayed some level of concordance for calling SNVs, the technologies that require restriction enzymes or transposase missed several SNVs largely because of the lack of coverage. All technologies performed well for copy number variation calling when compared to single-nucleotide polymorphism arrays. These results enable laboratories to compare these methods to make informed decisions for their intended applications.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Linhagem Celular Tumoral , Fragmentação do DNA , Enzimas de Restrição do DNA/química , Genoma Humano , Biblioteca Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/classificação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sensibilidade e Especificidade , Sonicação , Transposases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...