Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900092

RESUMO

Producing a polarized lanthanum (La) target with high polarization and long relaxation time is crucial for realizing time-reversal violation experiments using polarized neutron beams. We use a LaAlO3 crystal doped with a small amount of Nd3+ ions for the polarized lanthanum target. Optimizing the amount of Nd3+ ions is considerably important because the achievable polarization and relaxation time strongly depend on this amount. We established a fundamental method to grow single crystals of Nd3+:LaAlO3 using an optical floating zone method that employs halogen lamps and evaluated the crystals with the dynamic nuclear polarization (DNP) method for polarizing nuclear spins. Two crystal samples were grown by ourselves and evaluated with the DNP at 1.3 K and 2.3 T for the first time, except for the target materials of protons. The enhancement of nuclear magnetic resonance signals for 139La and 27Al was successfully observed, and the enhancement factors were eventually 3.5 ± 0.3 and 13 ± 3 for the samples with Nd3+ ions of 0.05 and 0.01 mol. %, respectively. These enhancement factors correspond to absolute vector polarizations of 0.27% ± 0.02% (Nd3+ 0.05 mol. %) and 1.4% ± 0.3% (Nd3+ 0.01 mol. %). Although the obtained polarizations are still low, they are acceptable as a first step. The combination scheme of the crystal growth and the evaluation of the crystals is found to be effectively applicable for optimizing the amount of Nd3+ ions for improving the performance of the polarized target.

2.
Acta Crystallogr D Struct Biol ; 74(Pt 8): 787-791, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30082514

RESUMO

To improve the sensitivity of hydrogen detection using neutrons, a proton-polarization technique together with a high-pressure cooling method is necessary. The highest pressure (200 MPa) used in the experiment described here enabled relatively large protein crystals to be cooled without any cryoprotectants while retaining the protein structure, and it was confirmed that high-pressure-cooled crystals diffracted to nearly the same resolution as flash-cooled small crystals soaked with cryoprotectants. Dynamic nuclear polarization was used as a proton-polarization technique for protein crystals, and ∼300 mg polycrystalline protein doped with TEMPOL gave a maximum proton polarization of 22.3% at a temperature of 0.5 K in a 2.5 T magnetic field.


Assuntos
Temperatura Baixa , Cristalografia/métodos , Hidrogênio/química , Difração de Nêutrons/métodos , Proteínas/química , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Muramidase/química , Pressão , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...