Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 111(10): 2745-2757, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839866

RESUMO

In this study, we conducted a collaborative study on the classification between silicone oil droplets and protein particles detected using the flow imaging (FI) method toward proposing a standardized classifier/model. We compared four approaches, including a classification filter composed of particle characteristic parameters, principal component analysis, decision tree, and convolutional neural network in the performance of the developed classifier/model. Finally, the points to be considered were summarized for measurement using the FI method, and for establishing the classifier/model using machine learning to differentiate silicone oil droplets and protein particles.


Assuntos
Óleos de Silicone , Silicones , Tamanho da Partícula , Proteínas
2.
Sci Rep ; 10(1): 6333, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286391

RESUMO

We oxidized histidine residues in monoclonal antibody drugs of immunoglobulin gamma 1 (IgG1) using ultraviolet C irradiation (UVC: 200-280 nm), which is known to be potent for sterilization or disinfection. Among the reaction products, we identified asparagine and aspartic acid by mass spectrometry. In the photo-induced oxidation of histidine in angiotensin II, 18O atoms from H218O in the solvent were incorporated only into aspartic acid but not into asparagine. This suggests that UVC irradiation generates singlet oxygen and induces [2 + 2] cycloaddition to form a dioxetane involving the imidazole Cγ - Cδ2 bond of histidine, followed by ring-opening in the manner of further photo-induced retro [2 + 2] cycloaddition. This yields an equilibrium mixture of two keto-imines, which can be the precursors to aspartic acid and asparagine. The photo-oxidation appears to occur preferentially for histidine residues with lower pKa values in IgG1. We thus conclude that the damage due to UVC photo-oxidation of histidine residues can be avoided in acidic conditions where the imidazole ring is protonated.


Assuntos
Anticorpos Monoclonais/química , Histidina/química , Imunoglobulina G/química , Oxigênio Singlete/química , Angiotensina II/química , Anticorpos Monoclonais/efeitos da radiação , Histidina/efeitos da radiação , Humanos , Imidazóis/química , Imunoglobulina G/efeitos da radiação , Espectrometria de Massas , Oxirredução/efeitos da radiação , Raios Ultravioleta
3.
J Biol Chem ; 290(49): 29461-77, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26491021

RESUMO

Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ~30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte/química , Proteínas Cromossômicas não Histona/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Animais , Área Sob a Curva , Bacillus , Sítios de Ligação , Calorimetria , Proteínas de Ciclo Celular/química , Clonagem Molecular , Cristalografia por Raios X , DNA/química , Análise Mutacional de DNA , Humanos , Hidrogênio/química , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Pyrococcus , Saccharomyces cerevisiae , Coesinas
4.
J Phys Chem A ; 113(25): 7021-9, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19480421

RESUMO

The gamma-Ga(2)O(3)-Al(2)O(3) mixed oxides with a spinel structure were prepared by the solvothermal reaction of gallium acetylacetonate and aluminum isopropoxide in diethylenetriamine. In the crystal structures of the catalysts obtained by the calcination of these mixed oxides, Ga(3+) and Al(3+) ions preferentially occupied tetrahedral and octahedral sites, respectively. The catalysts with low Ga contents had a unique structure with high surface areas and a concentration gradient of decreasing Ga content from the surface to the bulk. In methane-selective catalytic reduction (SCR) of NO, higher NO conversion to N(2) was attained on the catalyst with high occupation of Ga(3+) ions at tetrahedral sites and Al(3+) ions at octahedral sites. For the gamma-Ga(2)O(3)-Al(2)O(3) mixed oxide with a charged Ga molar content of 0.3 (ST(0.3)), tetrahedral and octahedral sites were solely occupied by Ga(3+) and Al(3+) ions, respectively, and the catalyst exhibited the highest NO conversion to N(2). Therefore, it was concluded that the active site for methane-SCR of NO is tetrahedral Ga(3+) ion and octahedral Al(3+) ion, which are linked to each other. Nitrogen monoxide is adsorbed on the isolated hydroxyl group attached to Al(3+) ions and then oxidized by O(2) yielding surface nitrate species. Tetrahedral Ga(3+) ions work as Lewis acid sites for the activation of methane because of their coordinative unsaturation. The Ga(3+) ions in the gamma-Ga(2)O(3)-Al(2)O(3) catalyst have a redox property, which plays important roles in both the oxidation of NO to surface nitrate species and the activation of methane. The most important factor for this catalyst is that the sites for the formation of surface nitrate species reside next to the methane activation sites, which facilitates the reaction between surface nitrate species and the activated species derived from methane, thus mitigating the consumption of methane by simple combustion with O(2). Therefore, ST(0.3), which has the largest number of ensembles of the tetrahedral Ga(3+) ions and octahedral Al(3+) ions, shows the highest activity for methane-SCR of NO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...