Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(17): 13131-13139, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629236

RESUMO

The reactivity of the reduction of NO pre-adsorbed on Rh2-9+ clusters by CO was investigated using a combination of an alternate on-off gas injection method and thermal desorption spectrometry. The reduction of RhnNxOy+ clusters by CO was evaluated by varying the CO concentration at T = 903 K. Among the RhnNxOx+ clusters, the Rh3N2O2+ cluster exhibited the highest reduction activity, whereas the other clusters, Rh2,4-9NxOx+, showed lower reactivity. Density functional theory (DFT) calculations for Rh3+ and Rh6+ revealed that the rate-determining step for NO reduction in the presence of CO was NO bond dissociation through the kinetics analysis using the RRKM theory. The reduction of Rh3N2O2+ is kinetically preferable to that of Rh6N2O2+. The DFT results were in qualitative agreement with the experimental results.

2.
J Phys Chem A ; 127(42): 8821-8827, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819249

RESUMO

The adsorption of hydrogen on gas-phase vanadium cluster cations, Vn+ (n = 3-14), at 300 K and desorption of hydrogen from hydride clusters, VnHm+, upon heating were observed experimentally by combined thermal desorption spectrometry and mass spectrometry analyses. The ratio m/n was approximately 1.3 for all n values at 300 K, which was reduced to approximately zero at 1000 K. For n = 4, stable cluster geometries of V4Hm+ (m = 0, 2, 4, and 6) were investigated by DFT calculations, revealing that V4 adopted a trigonal pyramidal structure and the H atoms adsorbed mainly on the µ2 bridge sites. The adsorption reaction pathway of one H2 molecule on V4+ was also investigated. The experimentally estimated desorption energies of the H2 molecules were consistent with their calculated binding energies. Among the observed hydride clusters, V6H8+ was found to be significantly thermally durable, probably because of its close-packed octahedral V6 core structure, with H atoms occupying all hollow sites.

3.
J Control Release ; 347: 607-614, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35613686

RESUMO

Muscle-targeted drug delivery is a major challenge in nanomedicine. The extravasation of nanomedicines (or nanoparticles) from the bloodstream into muscle tissues is hindered by the continuous endothelium, the so-called blood-muscle barrier. This study aimed to evaluate the optimal size of macromolecular drugs for extravasation (or passive targeting) into muscle tissues. We constructed a size-tunable polymeric delivery platform as a polymeric nanoruler by grafting poly(ethylene glycol)s (PEGs) onto the poly(aspartic acid) (PAsp) backbone. A series of PEG-grafted copolymers (gPEGs) with a narrow size distribution between 11 and 32 nm in hydrodynamic diameter (DH) were prepared by changing the molecular weight of the PEGs. Biodistribution analyses revealed that accumulation amounts of gPEGs in the muscle tissues of normal mice tended to decrease above their size of ~15 nm (or ~11 nm for the heart). The gPEGs accumulated in the skeletal muscles of Duchenne muscular dystrophy model mice (mdx mice) at a 2-3-fold higher level than in the skeletal muscles of normal mice. At the same time, there was a reduced accumulation of gPEGs in the spleen and liver. Intravital confocal laser scanning microscopy and immunohistochemical analysis showed extravasation and locally enhanced accumulation of gPEGs in the skeletal muscle of mdx mice. This study outlined the pivotal role of macromolecular drug size in muscle-targeted drug delivery and demonstrated the enhanced permeability of 11-32 nm-sized macromolecular drugs in mdx mice.


Assuntos
Polietilenoglicóis , Polímeros , Animais , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Polietilenoglicóis/química , Polímeros/metabolismo , Distribuição Tecidual
4.
Phys Chem Chem Phys ; 23(47): 26721-26728, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842875

RESUMO

Decomposition reactions of NO molecules on gas-phase Rhn+ (n = 6-9) clusters were investigated by gas-phase thermal desorption spectrometry and density functional theory calculations. We found that NO adsorbs on the clusters, forming RhnNxOx+ at room temperature. Upon heating, NO desorption was observed below 800 K. Above 800 K, while for n = 7 and 8, each of Rh7N3O3+, Rh7N4O4+, and Rh8N3O3+ was found to release an N2 molecule, no N2 formation was clearly observed for Rh6,9NxOy+. We considered that both Rh7N3O3+ and Rh8N3O3+ have at least two dissociated NO molecules, while Rh6NxOx+ (x = 1-3) has one or less. Our computational results for Rh8N3O3+ suggested that the formation of an N-N bond in the Rh8N3O3+ structure must overcome an energy barrier of ∼2 eV, which is the highest among the suggested possible reaction pathways. These findings suggested that the size-dependent activity of NO decomposition is governed primarily by how NO molecules are adsorbed on Rhn+ clusters, i.e. whether two or more N atoms from dissociated NO molecules exist in the NO adsorbed clusters, and secondly, by the readiness of the N-N bond formation.

5.
J Phys Chem A ; 124(11): 2328-2334, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32106678

RESUMO

Nucleation kinetics in gas phase remains an open issue with no general model. The derivation of the reaction constants assuming a canonical ensemble fails to describe anisotropic materials such as oxides. We have developed a general and versatile model using activated complex kinetics with a microcanonical approach. This approach handles the kinetics issue in cluster growth when the transient nature of the processes hinders the use of the canonical ensemble. The model efficiently reproduces experimental size distributions of alumina clusters formed by laser ablation with different buffer gas densities, including magic numbers. We show that the thermodynamic equilibrium is not reached during the growth. The bounding energy measured is 10 times lower than the one deduced from DFT calculation, but also the one expected from the bulk cohesive energy.

6.
Phys Chem Chem Phys ; 21(41): 23129-23135, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31609369

RESUMO

The resistivity to oxidation of small copper clusters, Cun+ (n ≤ 5), in the gas phase with a precise atomicity at the molecular level was investigated using a combination of thermal desorption spectrometry and mass spectrometry. Oxide clusters, CunOm+, with more O atoms than those present with a stoichiometry of n : m = 1 : 1 were produced at room temperature in the presence of O2, and the weakly bound excess oxygen atoms involved in the clusters were removed by post heating. Non-oxidized Cu2+ and Cu3+ clusters were formed in the range of 323-923 K, whereas partially oxidized clusters, Cu4O2+ and Cu5O2+, were generated for n = 4 and 5. Considering the fact that CunOm+ (m = n/2 + 1) tends to be generated for n ≥ 6, the small copper clusters were concluded to be resistive to oxidation. The possible reaction paths for the oxidation of Cu2+ and Cu4+ clusters were obtained by density functional calculations, which were consistent with the experimental findings. The oxidation states of the Cu atoms in the clusters were discussed based on the natural charges of the atoms.

7.
ACS Appl Bio Mater ; 2(11): 4941-4952, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021494

RESUMO

In cellulo crystallization is a developing technique to provide crystals for protein structure determination, particularly for proteins that are difficult to prepare by in vitro crystallization. This method has a key advantage: it requires neither a protein purification step nor a crystallization step. However, there is still no systematic strategy for improving the technique of in cellulo crystallization because the process occurs spontaneously. Here we report a protocol to produce and extract in cellulo crystals of human lysosomal neuraminidase-1 (NEU1) in human cultured cells. Overexpression of NEU1 protein by the retransfection of cells pretransfected with neu1-overexpressing plasmid improved the efficiency of NEU1 crystallization. Microscopic analysis revealed that NEU1 proteins were not crystallized in the lysosome but in the endoplasmic reticulum (ER). Screening of the buffer conditions used to extract crystals from cells further improved the crystal yield. The optimal pH was 7.0, which corresponds to the pH in the ER. Use of a high-yield flask with a large surface area also yielded more crystals. These optimizations enabled us to execute a serial femtosecond crystallography experiment with a sufficient number of crystals to generate a complete data set. Optimization of the in cellulo crystallization method was thus shown to be possible.

8.
Phys Chem Chem Phys ; 20(11): 7781-7790, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29504007

RESUMO

The thermal decomposition of free cationic iron-sulfur clusters FexSy+ (x = 0-7, y = 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric FexSy+ (y = x) or near stoichiometric FexSy+ (y = x ± 1) clusters is observed. In particular, Fe4S4+ represents the most abundant product up to 600 K, Fe3S3+ and Fe3S2+ are preferably formed between 600 K and 800 K, and Fe2S2+ clearly dominates the cluster distribution above 800 K. These temperature dependent fragment distributions suggest a sequential fragmentation mechanism, which involves the loss of sulfur and iron atoms as well as FeS units, and indicate the particular stability of Fe2S2+. The potential fragmentation pathways are discussed based on first principles calculations and a mechanism involving the isomerization of the cluster prior to fragmentation is proposed. The fragmentation behavior of the iron-sulfur clusters is in marked contrast to the previously reported thermal dissociation of analogous iron-oxide clusters, which resulted in the release of O2 molecules only, without loss of metal atoms and without any tendency to form particular prominent and stable FexOy+ clusters at high temperatures.

9.
J Synchrotron Radiat ; 24(Pt 5): 1086-1091, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862633

RESUMO

X-ray free-electron lasers (XFELs) have opened new opportunities for time-resolved X-ray crystallography. Here a nanosecond optical-pump XFEL-probe device developed for time-resolved serial femtosecond crystallography (TR-SFX) studies of photo-induced reactions in proteins at the SPring-8 Angstrom Compact free-electron LAser (SACLA) is reported. The optical-fiber-based system is a good choice for a quick setup in a limited beam time and allows pump illumination from two directions to achieve high excitation efficiency of protein microcrystals. Two types of injectors are used: one for extruding highly viscous samples such as lipidic cubic phase (LCP) and the other for pulsed liquid droplets. Under standard sample flow conditions from the viscous-sample injector, delay times from nanoseconds to tens of milliseconds are accessible, typical time scales required to study large protein conformational changes. A first demonstration of a TR-SFX experiment on bacteriorhodopsin in bicelle using a setup with a droplet-type injector is also presented.

10.
Phys Chem Chem Phys ; 19(31): 20401-20411, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730209

RESUMO

The geometric and electronic properties of silicon-atom-doped aluminum clusters, AlnSim (n = 7-30, m = 0-2), were investigated experimentally. The size dependences of the ionization energy and electron affinity of AlnSim show that the stability of AlnSim is governed by the total number of valence electrons in the clusters, where Al and Si atoms behave as trivalent and tetravalent atoms, respectively. Together with theoretical calculations, it has been revealed that neutral Al10Si and Al12Si have a cage-like geometry with central Si atom encapsulation and closed electronic structures of superatomic orbitals (SAOs), and also that they both exhibit geometric robustness against reductive and oxidative changes as cage-like binary superatoms of Si@Al10 and Si@Al12. As well as the single-atom-doped binary superatoms, the effect of symmetry lowering was examined by doping a second Si atom toward the electron SAO closing of 2P SAO, forming Al11Si2. The corresponding anion and cation clusters keep their geometry of the neutral intact, and the ionization energy is low compared to others, showing that Al11Si2 is characterized to be, Si@Al11Si as an alkaline-like binary superatom. For Al21Si2, a face-sharing bi-icosahedral structure was identified to be the most stable as dimeric superatom clusters.

11.
J Phys Chem Lett ; 8(10): 2143-2147, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28445054

RESUMO

The catalytic decomposition of NO by cationic platinum oxide cluster Pt3O4+ was investigated by mass spectrometry and thermal desorption spectrometry. Upon reaction with two NO molecules, molecular oxygen desorbed from the cluster at room temperature to form Pt3O4N2+. Then, at temperatures above 400 K, desorption of N2 from Pt3O4N2+ was observed. These processes were confirmed by isotope-labeling experiments, and the energetics of O2 and N2 release were determined by density functional calculations. The combination of these elementary steps resulted in the catalytic decomposition of NO by Pt3O4+.

12.
J Phys Chem A ; 120(43): 8599-8605, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27736071

RESUMO

Infrared multiple photon dissociation (IRMPD) spectra of Rh6Om+ (m = 4-10) are obtained in the 300-1000 cm-1 spectral range using the free electron laser for infrared experiments (FELIX) via dissociation of Rh6Om+ or Rh6Om+-Ar complexes. The spectra are compared with the calculated spectra of several stable geometries obtained by density functional theory (DFT) structural optimization. The spectrum for Rh6O4+ shows prominent bands at 620 and 690 cm-1 and is assigned to a capped-square pyramidal Rh atom geometry with three bridging O atoms and one O atom in a hollow site. Rh6O5+ displays bands at 460, 630, 690, and 860 cm-1 and has a prismatic Rh geometry with three bridging O atoms and two O atoms in a hollow site. Rh6O6+ shows three intense bands around 600-750 cm-1 and multiple weak bands in the range of 350-550 cm-1. This species has a prismatic Rh geometry with four bridging O atoms and two O atoms in a hollow site. Considering that Rh6Om+ (m ≤ 3) adopts tetragonal bipyramidal Rh6 structures, the change at m = 4 to capped bipyramidal and at m = 5 to prismatic geometries results in a reduction of the number of triangular hollow sites. Since NO preferentially binds on a triangular hollow site through the N atom, the geometry change lowers the possibility of NO dissociative adsorption.

13.
J Phys Chem A ; 120(39): 7624-7633, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27627215

RESUMO

The stability and reactivity of cationic gold-cerium oxide clusters, AumCenO2n+x+ (m ≤ 4, n ≤ 7, -1 ≤ x ≤ 2), were examined experimentally and computationally. These clusters were generated by simultaneous laser ablation of gold and cerium oxide targets and analyzed by time-of-flight mass spectrometry combined with gas-phase temperature-programmed desorption. Stable compositions of gold-cerium oxide clusters were identified as AumCenO2n+ and AumCenO2n+1+ for m ≥ 1, containing one oxygen atom more than the stable gold-free cerium oxide clusters CenO2n-1+ and CenO2n+. In either case, the stable clusters mainly consisted of Ce4+ and O2-, and the gold atoms had an oxidation state of +1. The reactivity of cerium oxide clusters toward CO was modified by gold atoms, which hindered CO oxidation while efficiently promoting its adsorption. According to density functional theory calculations, the oxygen-centered radical of cerium oxide clusters, considered to be the reactive site, was geometrically and electronically inactivated by gold atoms, which functioned as a CO adsorption site.

14.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 520-3, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050131

RESUMO

A liquid-droplet injector has been developed that delivers pristine microcrystals to an X-ray irradiation area for conducting serial femtosecond crystallography (SFX) with an X-ray free-electron laser (XFEL). By finely tuning the pulsed liquid droplets in time and space, a high hit rate of the XFEL pulses to microcrystals in the droplets was achieved for measurements using 5 µm tetragonal lysozyme crystals, which produced 4265 indexable diffraction images in about 30 min. The structure was determined at a resolution of 2.3 Å from <0.3 mg of protein. With further improvements such as reduction of the droplet size, liquid droplets have considerable potential as a crystal carrier for SFX with low sample consumption.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos
15.
J Phys Chem A ; 120(3): 356-63, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26730616

RESUMO

Gas-phase rhodium oxide clusters, RhnOm(+), were investigated by measuring the rate constants of oxidation and thermal desorption spectrometry. RhnOm(+) was suggested to be categorized into different states as m/n ≤ 1, 1 < m/n ≤ 1.5, and 1.5 < m/n in terms of energy and kinetics. For m/n ≤ 1, the O atoms readily adsorbed on the cluster with a large binding energy until RhO was formed. Under the O2-rich environment, oxidation proceeded until Rh2O3 was formed with a moderate binding energy. In addition, O2 molecules attached weakly to the cluster, and Rh2O3 formed RhnOm(+) (1.5 < m/n). The energetics and geometries of Rh6Om(+) (m = 6-12) were obtained using density functional theory calculations and were found to be consistent with the experimental results.

16.
J Phys Chem A ; 119(41): 10255-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26394781

RESUMO

The reactivity of cerium oxide cluster cations, CenO2n+x(+) (n = 2-9, x = -1 to +2), with NO was investigated using gas-phase temperature-programmed desorption (TPD) combined with mass spectrometry. Target clusters were prepared in the gas phase via the laser ablation of a cerium oxide rod in the presence of oxygen, which was diluted using helium as a carrier gas. NO adsorbed onto stoichiometric and oxygen-rich clusters of CenO2n+x(+) (x = 0-2), forming CenO2n+x(NO)(+) (x = 0-2) species. Gas-phase TPD was measured for the NO-adsorbed clusters, revealing that CenO2n(NO)(+) released NO2 at 600-900 K, forming CenO2n-1(+). Therefore, the overall reaction was the oxidation of NO by the CenO2n(+) clusters, which was explained in terms of a Langmuir-Hinshelwood type reaction. An activation barrier existed between the initial complex (CenO2n(NO)(+)) and the final oxidation products (CenO2n-1(+) + NO2). To determine the nature of the intermediates and the activation barrier, TPD was also performed on CenO2n-1(NO2)(+), which had been prepared through the adsorption of NO2 on CenO2n-1(+) for comparison. The activation barrier was associated with the release of NO2 from the intermediate complex (CenO2n-1(+)-NO2 → CenO2n-1(+) + NO2) rather than the structural rearrangement that formed NO2 in the other intermediate complex (CenO2n(+)-NO → CenO2n-1(+)-NO2).

17.
J Phys Chem A ; 119(37): 9573-80, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26317244

RESUMO

Adsorption of NO molecules on gas phase cobalt cluster ions, Con(+) (n = 4-9), was investigated in thermal equilibrium with He gas at 300 K. The Con(+) clusters, contrary to the isolated clusters in a vacuum, adsorbed NO without undergoing significant dissociation. Thermal desorption spectroscopy of Con(+)(NO)m indicated that Con(+) clusters with n = 4-6 and n = 7-9 can have four and six adatoms chemisorbed, respectively. Reduction of NO occurred, releasing N2 molecules, to form Con(+)Ok(NO)m-k (k = 2, 4, ...). The reaction mechanism involved the exchange of chemisorbed N atoms with the O atom in NO bound to the clusters. The reactivity of Con(+) (n = 4-9) exhibited periodic n dependence, and Co6(+) and Co9(+) was similar to the case of the isolated Co16(+) clusters holding up to eight adatoms reported by Anderson et al. ( J. Chem. Phys . 2009 , 130 , 10992 - 11000 ).

18.
J Phys Chem A ; 119(29): 8055-61, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26125658

RESUMO

Palladium oxide cluster ions, PdnOm(+), were prepared in the gas phase using laser ablation of a palladium rod in the presence of oxygen. The cluster ions were heated to 1000 K downstream from the cluster source (post heating), and the abundance of PdnOm(+) (n = 2-7) was examined using mass spectrometry. Temperature-programmed desorption experiments revealed that an oxygen molecule is released from oxygen-rich PdnOm(+), forming oxygen-deficient PdnOm-2(+). It was found that Pd6O4(+) was thermally stable up to 1000 K. The activation energy for oxygen molecule desorption has been obtained and compared with previous results by Lang et al.

19.
J Phys Chem A ; 119(31): 8461-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26158761

RESUMO

Cationic rhodium clusters, Rh(n)(+) (n = 4-8), were prepared in the gas phase by the laser ablation of a Rh rod. The Rh(n)(+) clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He, where they were subjected to collisions with NO and He in a thermal equilibrium at 300 K. The NO molecules were found to adsorb sequentially on the Rh(n)(+) clusters forming Rh(n)(+)(NO)m. To examine the adsorption form and the reaction of NO, we heated Rh(n)(+)(NO)m in an extension tube located after the reaction gas cell and the thermal response of the clusters, desorption of the fragments, was recorded as a function of temperature (300-1000 K). The desorption of NO molecules was predominantly observed below 500 K, giving either Rh(n)(+)(NO)n+1 or Rh(n)(+)(NO)n+2, which indicates that there were NO molecules loosely adsorbed on the Rhn(+) clusters. Further desorption was found to proceed at higher temperatures (500-1000 K), whereby NO was released from the smaller clusters, Rh(n)(+) (n ≤ 5). In contrast, for the larger clusters (n ≥ 6), N2 release was clearly observed at high temperatures (>800 K). Thus, the reduction of NO occurred for larger clusters at higher temperatures.

20.
J Phys Chem A ; 119(31): 8433-42, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26153899

RESUMO

Temperature-programmed desorption (TPD) experiments were performed on gas-phase manganese oxide cluster ions, namely, Mn(n)O(m)(+) (n = 3-20) and Mn(n)O(m)(-) (n = 3-18). These cluster ions were prepared by laser ablation of a manganese rod in the presence of oxygen gas, and their composition was investigated using mass spectrometry. The composition of Mn(n)O(m)(±) distribution lies above the m = (4/3)n line. When the cluster ions were heated to 1000 K, Mn(n)O(m)(+) (m = (4/3)n + δ, with δ = -1, 0) and Mn(n)O(m)(-) (m = (4/3)n + δ, with δ = 0, 1) was found to be the predominant species, formed by thermal dissociation. These experimental findings indicate that the nascent manganese oxide clusters comprise robust Mn(n)O(m)(±) (m/n ≈ 4/3) and weakly bound excess oxygen atoms. On the basis of the TPD experiments, the oxygen-molecule release was identified as the main dissociation channel. The temperature dependence of O2 desorption was found to be similar among the clusters with the same oxygen excess or deficiency regardless of the number of Mn atoms. The threshold energy of O2 desorption was estimated for Mn4O(m)(+) (m = 6-11) and compared with bond dissociation energies calculated by density functional theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...