Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(16): 7272-7279, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36987742

RESUMO

We recently found that [Pt17(CO)12(PPh3)8]z (Pt = platinum; CO = carbon monoxide; PPh3 = triphenylphosphine; z = 1+ or 2+) is a Pt nanocluster (Pt NC) that can be synthesized with atomic precision in air. The present study demonstrates that it is possible to prepare a Pt17-supported carbon black (CB) catalyst (Pt17/CB) with 2.1 times higher oxygen reduction reaction (ORR) activity than commercial Pt nanoparticles/CB by the adsorption of [Pt17(CO)12(PPh3)8]z onto CB and subsequent calcination of the catalyst. Density functional theory calculation strongly suggests that the high ORR activity of Pt17/CB originates from the surface Pt atoms that have an electronic structure appropriate for the progress of ORR. These results are expected to provide design guidelines for the fabrication of highly active ORR catalysts using Pt NCs with a diameter of about 1 nm and thereby enabling the use of reduced amounts of Pt in polymer electrolyte fuel cells.

2.
Commun Chem ; 6(1): 57, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977829

RESUMO

Metal nanoclusters composed of noble elements such as gold (Au) or silver (Ag) are regarded as superatoms. In recent years, the understanding of the materials composed of superatoms, which are often called superatomic molecules, has gradually progressed for Au-based materials. However, there is still little information on Ag-based superatomic molecules. In the present study, we synthesise two di-superatomic molecules with Ag as the main constituent element and reveal the three essential conditions for the formation and isolation of a superatomic molecule comprising two Ag13-xMx structures (M = Ag or other metal; x = number of M) connected by vertex sharing. The effects of the central atom and the type of bridging halogen on the electronic structure of the resulting superatomic molecule are also clarified in detail. These findings are expected to provide clear design guidelines for the creation of superatomic molecules with various properties and functions.

3.
Chem Sci ; 13(19): 5546-5556, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694356

RESUMO

To use atomically precise metal nanoclusters (NCs) in various application fields, it is essential to establish size-selective synthesis methods for the metal NCs. Studies on thiolate (SR)-protected gold NCs (Au n (SR) m NCs) revealed that the atomically precise Au n (SR) m NC, which has a different chemical composition from the precursor, can be synthesized size-selectively by inducing transformation in the framework structure of the metal NCs by a ligand-exchange reaction. In this study, we selected the reaction of [Au25(SC2H4Ph)18]- (SC2H4Ph = 2-phenylethanethiolate) with 4-tert-butylbenzenethiol ( t BuPhSH) as a model ligand-exchange reaction and attempted to obtain new metal NCs by changing the amount of thiol, the central atom of the precursor NCs, or the reaction time from previous studies. The results demonstrated that [Au23(SPh t Bu)17]0, [Au26Pd(SPh t Bu)20]0 (Pd = palladium) and [Au24Pt(SC2H4Ph)7(SPh t Bu)11]0 (Pt = platinum) were successfully synthesized in a high proportion. To best of our knowledge, no report exists on the selective synthesis of these three metal NCs. The results of this study show that a larger variety of metal NCs could be synthesized size-selectively than at present if the ligand-exchange reaction is conducted while changing the reaction conditions and/or the central atoms of the precursor metal NCs from previous studies.

4.
J Chem Phys ; 155(2): 024302, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34266257

RESUMO

Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...