Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 42(5): 693-712, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34641740

RESUMO

Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials. In this context, D-xylose usage is crucial as it is the second-most abundant sugar in nature. The application of XIs in biotransforming xylose, enabling downstream metabolism in several microorganisms, is a smart strategy for ensuring a low-carbon footprint and producing several value-added biochemicals with broad industrial applications such as in the food, cosmetics, pharmaceutical, and polymer industries. Considering recent advancements that have expanded the range of applications of XIs, this review provides a comprehensive and concise overview of XIs, from their primary sources to the biochemical and structural features that influence their mechanisms of action. This comprehensive review may help address the challenges involved in XI applications in different industries and facilitate the exploitation of xylose bioprocesses.


Assuntos
Aldose-Cetose Isomerases , Xilose , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1864(5): 129549, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035160

RESUMO

BACKGROUND: Enzymatic isomerization is a promising strategy to solve the problem of xylose fermentation and, consequently, to leverage the production of advanced biofuels and biochemicals. In a previous work, our research group discovered a new strain of Streptomyces with great biotechnological potential due to its ability to produce a broad arsenal of enzymes related to lignocellulose degradation. METHODS: We applied a multidisciplinary approach involving enzyme kinetics, biophysical methods, small angle X-ray scattering and X-ray crystallography to investigate two novel xylose isomerases, XylA1F1 and XylA2F1, from this strain. RESULTS: We showed that while XylA1F1 prefers to act at lower temperatures and relatively lower pH, XylA2F1 is extremely stable at higher temperatures and presents a higher turnover number. Structural analysis revealed that XylA1F1 exhibits unique properties in the active site not observed in classical XylAs from classes I and II nor in its ortholog XylA2F1. It encompasses the natural substitutions, M86A and T93K, that create an extra room for substrate accommodation and narrow the active-site entrance, respectively. Such modifications may contribute to the functional differentiation of these enzymes. CONCLUSIONS: We have characterized two novel xylose isomerases that display distinct functional behavior and harbor unprecedented amino-acid substitutions in the catalytic interface. GENERAL SIGNIFICANCE: Our findings contribute to a better understanding of the functional and structural aspects of xylose isomerases, which might be instrumental for the valorization of the hemicellulosic fraction of vegetal biomass.


Assuntos
Aldose-Cetose Isomerases/química , Streptomyces/enzimologia , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Streptomyces/química , Streptomyces/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...