Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 338(1): 29-35, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19823824

RESUMO

The guinea-pig ileocaecal junction including the valve was studied by immunohistochemistry to clarify the organization of the muscle bundles, the enteric nerves and the interstitial cells of Cajal (ICC). This region clearly exhibited characteristic features in the distribution patterns of ICC in a proximal to distal direction: (1) the thickened portion of the terminal ileum immediately adjacent to the ileocecal junction contained many ICC throughout the circular (ICC-CM) and longitudinal (ICC-LM) muscle layers, but ICC were few or absent in the rest of the ileum; (2) the ileal side of the valve contained ICC associated with the deep muscular plexus (ICC-DMP) as in the small intestine, whereas ICC-DMP were absent in the caecal side as in the caecum; (3) the valve contained many ICC-CM and ICC-LM in both the ileal and caecal sides; (4) many ICC associated with the myenteric plexus were observed in both the ileal and caecal sides of the valve, whereas they were only sparsely found in the caecum; (5) ICC were also observed around the submucosal plexus in a confined area of the terminal ileum and the ileocaecal valve. These observations provide morphological evidence that the terminal ileum and ileocaecal valve are specially equipped for their active involvement in the movement of the junctional area.


Assuntos
Ceco/anatomia & histologia , Íleo/anatomia & histologia , Células Intersticiais de Cajal/citologia , Animais , Ceco/metabolismo , Cobaias , Humanos , Íleo/metabolismo , Imuno-Histoquímica , Células Intersticiais de Cajal/metabolismo
2.
Cell Tissue Res ; 328(2): 271-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17252245

RESUMO

The distribution and ultrastructure of the interstitial cells of Cajal (ICC) has been examined in the small intestine of the frog Xenopus laevis, as the physiological significance of these cells remains obscure in amphibians and other lower vertebrates. The present study has revealed the existence of a special type of interstitial cell in the tunica muscularis of the small intestine of Xenopus; this cell is characterized by the presence of numerous caveolae, many small mitochondria, and the formation of intercellular connections with the same type of cell. Since these ultrastructural features are shared with mammalian ICC, the cells in the small intestine of Xenopus probably correspond to ICC. These cells also form close contacts with neighboring smooth muscle cells and with nerve varicosities containing accumulations of synaptic vesicles. These cellular networks are likely to be involved in the transmission of nerve impulses to muscle cells, as has been suggested for mammalian tissues. However, true gap junctions have not been detected; they occur neither between the same type of cells nor between the putative ICC and smooth muscle cells. The widespread distribution of ICC or equivalent cells in different groups of vertebrates, together with the conservation of their ultrastructural features, suggests that they differentiated early in vertebrate evolution to play key regulatory roles in gastrointestinal movement.


Assuntos
Intestino Delgado/citologia , Intestino Delgado/ultraestrutura , Músculo Liso/ultraestrutura , Xenopus laevis , Animais , Neuroglia/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...