Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 11(8): 1193-207, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25981042

RESUMO

RIG-I-mediated type I interferon (IFN) production and nuclease-mediated viral RNA degradation are essential for antiviral innate immune responses. DDX60 is an IFN-inducible cytoplasmic helicase. Here, we report that DDX60 is a sentinel for both RIG-I activation and viral RNA degradation. We show that DDX60 is an upstream factor of RIG-I that activates RIG-I signaling in a ligand-specific manner. DDX60 knockout attenuates RIG-I signaling and significantly reduces virus-induced type I IFN production in vivo. In addition, we show that DDX60 is involved in RIG-I-independent viral RNA degradation. DDX60 and RIG-I adaptor MAVS double-knockout mice reveal a role for DDX60-dependent RNA degradation in antiviral responses. Several viruses induced DDX60 phosphorylation via epidermal growth factor receptor (EGFR), leading to attenuation of the DDX60 antiviral activities. Our results define DDX60 as a sentinel for cytoplasmic antiviral response, which is counteracted by virus-mediated EGF receptor activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/imunologia , Receptores de Fatores de Crescimento do Endotélio Vascular/imunologia , Vesiculovirus/imunologia , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células HEK293 , Células HeLa , Humanos , Imunidade Inata , Interferon-alfa/imunologia , Camundongos , Camundongos Knockout , RNA Viral/imunologia , Receptores Imunológicos , Transdução de Sinais , Vesiculovirus/genética
2.
PLoS One ; 8(12): e83639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349538

RESUMO

Cytoplasmic viral RNA and DNA are recognized by RIG-I-like receptors and DNA sensors that include DAI, IFI16, DDX41, and cGAS. The RNA and DNA sensors evoke innate immune responses through the IPS-1 and STING adaptors. IPS-1 and STING activate TBK1 kinase. TBK1 is phosphorylated in its activation loop, leading to IRF3/7 activation and Type I interferon (IFN) production. IPS-1 and STING localize to the mitochondria and endoplasmic reticulum, respectively, whereas it is unclear where phosphorylated TBK1 is localized in response to cytoplasmic viral DNA. Here, we investigated phospho-TBK1 (p-TBK1) subcellular localization using a p-TBK1-specific antibody. Stimulation with vertebrate DNA by transfection increased p-TBK1 levels. Interestingly, stimulation-induced p-TBK1 exhibited mitochondrial localization in HeLa and HepG2 cells and colocalized with mitochondrial IPS-1 and MFN-1. Hepatitis B virus DNA stimulation or herpes simplex virus type-1 infection also induced p-TBK1 mitochondrial localization in HeLa cells, indicating that cytoplasmic viral DNA induces p-TBK1 mitochondrial localization in HeLa cells. In contrast, p-TBK1 did not show mitochondrial localization in RAW264.7, L929, or T-23 cells, and most of p-TBK1 colocalized with STING in response to cytoplasmic DNA in those mammalian cells, indicating cell type-specific localization of p-TBK1 in response to cytoplasmic viral DNA. A previous knockout study showed that mouse IPS-1 was dispensable for Type I IFN production in response to cytoplasmic DNA. However, we found that knockdown of IPS-1 markedly reduced p-TBK1 levels in HeLa cells. Taken together, our data elucidated the cell type-specific subcellular localization of p-TBK1 and a cell type-specific role of IPS-1 in TBK1 activation in response to cytoplasmic viral DNA.


Assuntos
DNA Viral/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/enzimologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , DNA Viral/genética , Células HeLa , Células Hep G2 , Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Camundongos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Tupaiidae
3.
PLoS Pathog ; 9(8): e1003533, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950712

RESUMO

The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Imunidade Inata , Ubiquitinação/fisiologia , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Chlorocebus aethiops , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células Hep G2 , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/genética , Hepatite C/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Receptores Imunológicos , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
4.
Biol Pharm Bull ; 35(5): 781-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22687417

RESUMO

Superoxide dismutase (SOD) is a potent antioxidant agent that protects against UV-induced skin damage. However, its high molecular weight is a significant obstacle for efficient delivery into the skin through the stratum corneum and development of antioxidant activity. Recently, we developed a non-invasive transfollicular delivery system for macromolecules using a combination of liposomes and iontophoresis, that represents promising technology for enhancing transdermal administration of charged drugs (IJP, 403, 2011, Kajimoto et al.). In this study, in rats we attempted to apply this system to intradermal delivery of SOD for preventing UV-induced skin injury. SOD encapsulating in cationic liposomes was subjected to anodal iontophoresis. After iontophoretic treatment, the liposomes were diffused widely in the viable skin layer around hair follicles. In contrast, passive diffusion failed to transport liposomes efficiently into the skin. Iontophoretic delivery of liposomes encapsulating SOD caused a marked decrease in the production of oxidative products, such as malondialdehyde, hexanoyl lysine, and 8-hydroxi-2-deoxyguanosine, in UV-irradiated skin. These findings suggested that functional SOD can be delivered into the skin using a combination of iontophoresis and a liposomal system. In conclusion, we succeeded in developing an efficient intradermal SOD delivery system, that would be useful for delivery of other macromolecules.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Iontoforese/métodos , Absorção Cutânea/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Pele/efeitos dos fármacos , Superóxido Dismutase/administração & dosagem , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cátions , Folículo Piloso , Lipossomos , Masculino , Peso Molecular , Oxidantes/biossíntese , Ratos , Ratos Sprague-Dawley , Pele/efeitos da radiação , Dermatopatias/etiologia , Dermatopatias/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
5.
Mol Cell Biol ; 31(18): 3802-19, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21791617

RESUMO

The cytoplasmic viral RNA sensors RIG-I and MDA5 are important for the production of type I interferon and other inflammatory cytokines. DDX60 is an uncharacterized DEXD/H box RNA helicase similar to Saccharomyces cerevisiae Ski2, a cofactor of RNA exosome, which is a protein complex required for the integrity of cytoplasmic RNA. Expression of DDX60 increases after viral infection, and the protein localizes at the cytoplasmic region. After viral infection, the DDX60 protein binds to endogenous RIG-I protein. The protein also binds to MDA5 and LGP2 but not to the downstream factors IPS-1 and IκB kinase ε (IKK-ε). Knockdown analysis shows that DDX60 is required for RIG-I- or MDA5-dependent type I interferon and interferon-inducible gene expression in response to viral infection. However, DDX60 is dispensable for TLR3-mediated signaling. Purified DDX60 helicase domains possess the activity to bind to viral RNA and DNA. Expression of DDX60 promotes the binding of RIG-I to double-stranded RNA. Taken together, our analyses indicate that DDX60 is a novel antiviral helicase promoting RIG-I-like receptor-mediated signaling.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fenômenos Fisiológicos Virais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Chlorocebus aethiops , Efeito Citopatogênico Viral , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , DNA Viral/metabolismo , Exossomos/metabolismo , Células HEK293 , Células HeLa , Herpesvirus Humano 1/fisiologia , Humanos , Quinase I-kappa B/metabolismo , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Poliovirus/fisiologia , Estrutura Terciária de Proteína , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Receptores Imunológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like , Células Vero , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral
6.
Cell Host Microbe ; 8(6): 496-509, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21147464

RESUMO

RNA virus infection is recognized by the RIG-I-like receptors RIG-I and MDA5, which induce antiviral responses including the production of type I interferons (IFNs) and proinflammatory cytokines. RIG-I is regulated by Lys63-linked polyubiquitination, and three E3 ubiquitin ligases, RNF125, TRIM25, and Riplet, are reported to target RIG-I for ubiquitination. To examine the importance of Riplet in vivo, we generated Riplet-deficient mice. Fibroblasts, macrophages, and conventional dendritic cells from Riplet-deficient animals were defective for the production of IFN and other cytokines in response to infection with several RNA viruses. However, Riplet was dispensable for the production of IFN in response to B-DNA and DNA virus infection. Riplet deficiency abolished RIG-I activation during RNA virus infection, and the mutant mice were more susceptible to vesicular stomatitis virus infection than wild-type mice. These data indicate that Riplet is essential for regulating RIG-I-mediated innate immune response against RNA virus infection in vivo.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Células Cultivadas , Vírus de DNA/imunologia , Vírus de DNA/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Imunidade Inata , Interferon Tipo I/biossíntese , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus de RNA/imunologia , Receptores de Superfície Celular , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...