Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Res ; 137(4): 659-667, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598067

RESUMO

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.


Assuntos
Citoesqueleto de Actina , Arabidopsis , Cloroplastos , Luz , Cloroplastos/fisiologia , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Adiantum/fisiologia , Adiantum/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Actinas/metabolismo , Movimento
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569445

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function. Diffracted X-ray tracking (DXT) facilitates measurement of the intermolecular motions of receptors on the cell membranes of living cells, including all the components involved in receptor function. In this study, the intramolecular motion of the extracellular domain of native nAChR proteins in living myotube cells was analyzed using DXT for the first time. We revealed that the motion of the extracellular domain in the presence of an agonist (e.g., carbamylcholine, CCh) was restricted by an antagonist (i.e., alpha-bungarotoxin, BGT).


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Raios X , Ligantes , Domínios Proteicos , Fibras Musculares Esqueléticas/metabolismo
3.
Microscopy (Oxf) ; 72(1): 60-63, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36401875

RESUMO

It is important to understand and control the fine structure of the fuel cell catalyst layer in order to improve the battery characteristics of the fuel cell. A major challenge in observing the microstructure of the catalyst layer by electron microscopy is the visualization of ionomers, which have low contrast and are susceptible to damage by electron beam irradiation. Previous papers have reported transmission electron microscopy (TEM) observations of ionomers neutralized with cesium (Cs) ions. However, this approach involves chemical reactions and indirect visualization of ionomers. In contrast, we have previously revealed the microstructure of ionomers in frozen catalyst inks by cryogenic (cryo) scanning electron microscopy and cryo-TEM. In general, ionomers are basically used under high-temperature and humid conditions while the fuel cell is operating. Therefore, in this study, ultrathin sections prepared from the fuel cell catalyst layer (membrane electrode assemblies) were incubated in a chamber under high-temperature and humid conditions and then rapidly frozen for observation by cryo-TEM. As a result, we succeeded in observing the pore structure of the catalyst layer in the swollen state of the ionomer. The swollen ionomer surrounded and enclosed the Pt/C aggregates and bridged over the pores in the catalyst layer.

4.
Sci Rep ; 12(1): 7312, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508627

RESUMO

Phospholipids in the membrane consist of diverse pairs of fatty acids bound to a glycerol backbone. The biological significance of the diversity, however, remains mostly unclear. Part of this diversity is due to lysophospholipid acyltransferases (LPLATs), which introduce a fatty acid into lysophospholipids. The human genome has 14 LPLATs and most of them are highly conserved in vertebrates. Here, we analyzed the function of one of these enzymes, lysophosphatidylglycerol acyltransferase 1 (Lpgat1), in zebrafish. We found that the reproduction of heterozygous (lpgat1+/-) male mutants was abnormal. Crosses between heterozygous males and wild-type females produced many eggs with no obvious cleavage, whereas eggs produced by crosses between heterozygous females and wild-type males cleaved normally. Consistent with this, spermatozoa from heterozygous males had reduced motility and abnormal morphology. We also found that the occurrence of lpgat1 homozygous (lpgat1-/-) mutants was far lower than expected. In addition, downregulation of lpgat1 by morpholino antisense oligonucleotides resulted in severe developmental defects. Lipidomic analysis revealed that selective phospholipid species with stearic acid and docosahexaenoic acid were reduced in homozygous larvae and spermatozoa from heterozygotes. These results suggest that the specific phospholipid molecular species produced by Lpgat1 have an essential role in sperm fertilization and in embryonic development.


Assuntos
Ácidos Graxos , Peixe-Zebra , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Animais , Regulação para Baixo , Desenvolvimento Embrionário/genética , Ácidos Graxos/metabolismo , Feminino , Masculino , Reprodução/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Microscopy (Oxf) ; 71(1): 60-65, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34460914

RESUMO

An emulsion, a type of soft matter, is complexed with at least two materials in the liquid state (e.g. water and oil). Emulsions are classified into two types: water in oil (W/O) and oil in water (O/W), depending on the strength of the emulsifier. The properties and behavior of emulsions are directly correlated with the size, number, localization and structure of the dispersed phases in the continuous phase. Therefore, an understanding of the microstructure comprising liquid-state emulsions is essential for producing and evaluating these emulsions. Generally, it is impossible for conventional electron microscopy to examine liquid specimens, such as emulsion. Recent advances in cryo-scanning electron microscopy (cryo-SEM) could allow us to visualize the microstructure of the emulsions in a frozen state. Immersion freezing in slush nitrogen has often been used for preparing the frozen samples of soft matters. This preparation could generate ice crystals, and they would deform the microstructure of specimens. High-pressure freezing contributes to the inhibition of ice-crystal formation and is commonly used for preparing frozen biological samples with high moisture content. In this study, we compared the microstructures of immersion-frozen and high-pressure frozen emulsions (O/W and W/O types, respectively). The cryo-SEM observations suggested that high-pressure freezing is more suitable for preserving the microstructure of emulsions than immersion freezing.


Assuntos
Água , Microscopia Crioeletrônica , Emulsões , Congelamento , Microscopia Eletrônica de Varredura , Água/química
6.
Cell Rep ; 35(10): 109219, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107250

RESUMO

Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells.


Assuntos
Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Drosophila , Insetos
7.
Commun Biol ; 4(1): 538, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972673

RESUMO

Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli, which causes fatal systemic complications. Here, we identified a tetravalent peptide that inhibited Stx by targeting its receptor-binding, B-subunit pentamer through a multivalent interaction. A monomeric peptide with the same motif, however, did not bind to the B-subunit pentamer. Instead, the monomer inhibited cytotoxicity with remarkable potency by binding to the catalytic A-subunit. An X-ray crystal structure analysis to 1.6 Å resolution revealed that the monomeric peptide fully occupied the catalytic cavity, interacting with Glu167 and Arg170, both of which are essential for catalytic activity. Thus, the peptide motif demonstrated potent inhibition of two functionally distinct subunits of Stx.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Toxina Shiga/antagonistas & inibidores , Toxina Shiga/metabolismo , Animais , Domínio Catalítico , Chlorocebus aethiops , Cristalografia por Raios X , Fragmentos de Peptídeos/química , Ligação Proteica , Células Vero
8.
J Oleo Sci ; 70(4): 479-490, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692235

RESUMO

The effects of sucrose ester of fatty acid (SEF) on the nanostructure and the physical properties of water-in-oil (W/O)-type emulsified semisolid fats were investigated. Model emulsions including palm-based semisolid fats and fully hydrogenated rapeseed oils with 0.5% SEF or fractionated lecithin, were prepared by rapidly cooling crystallization using 0.5% monoacylglycerol as an emulsifier. The SEFs used in this study were functionalized with various fatty acids, namely, lauric, palmitic, stearic, oleic, and erucic acids. Cryogenic transmission electron microscopy (cryo-TEM) was used to observe the sizes of the solvent- extracted nanoplatelets. The solid fat content (SFC), oil migration value, and storage elastic modulus were also determined. The average crystal size, which was measured in length, of the fat blends with SEFs containing saturated fatty acids (namely, palmitic and stearic acids) was smaller than that of the SEFs containing unsaturated fatty acids (namely, oleic and erucic acids). The effects exerted by these fatty acid moieties on the spherulite size in the corresponding bulk fat blends were observed via polarized microscopy (PLM). The results suggest that nanostructure formation upon the addition of SEF ultimately influenced these aggregated microstructures. Generally, smaller platelets resulted in higher SFC in the fat phase, and a high correlation between the SFC and the G' values in W/O emulsion fats was observed (R2 = 0.884) at 30°C. In contrast, the correlation was low at 10℃. Furthermore, samples with larger nanocrystals had a higher propensity for oil migration. Thus, the addition of SEF regulated the fat crystal nanostructure during nucleation and crystal growth, which could ultimately influence the physical properties of commercially manufactured fat products such as margarine.


Assuntos
Emulsões/química , Gorduras/química , Ácidos Graxos/química , Nanopartículas/química , Óleo de Palmeira/química , Sacarose/química , Água/química , Fenômenos Químicos , Cristalização , Emulsificantes/química , Hidrogenação , Lecitinas/química , Margarina , Óleo de Brassica napus/química , Temperatura
9.
Nat Commun ; 11(1): 162, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919357

RESUMO

The emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet. The amphisome is also produced in response to IAV infection in the absence of PVF-tet by cells overexpressing ABC transporter subfamily A3, which plays an essential role in the maturation of multivesicular endosomes into the lamellar body, a lipid-sorting organelle. Our results show that the inducible amphisomes can function as a type of organelle-based anti-viral machinery by sequestering HA. PVF-tet efficiently rescues mice from the lethality of IAV infection.


Assuntos
Antivirais/farmacologia , Hemaglutininas Virais/metabolismo , Vírus da Influenza A/crescimento & desenvolvimento , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos/farmacologia , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Autofagossomos/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Endossomos/metabolismo , Feminino , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos , Células Sf9 , Spodoptera
10.
J Oleo Sci ; 67(7): 829-837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962451

RESUMO

The effect of nanostructured fat crystals on oil migration properties in water-in-oil-type emulsified semisolid fats was investigated. Model emulsions containing 4 different semisolid fats (palm oil, partially hydrogenated palm oil, partially hydrogenated soybean oil, and milk fat) and 1 bulk fat blend were prepared with rapidly cooling crystallization. The length of the nanoplatelets was observed by cryo transmission electron microscopy, the crystal thickness was calculated by small-angle X-ray diffraction, and the solid fat content (SFC) was determined. Although the interfacial surface of the dispersed water droplets did not influence nanoplatelet size, oil migration in the emulsified samples was lower than in the bulk fat. The crystal sizes in samples with partially hydrogenated soybean oil involving elaidic acid were larger, in contrast to that of milk fat, involving low to medium chain length fatty acids, which had smaller crystal sizes and showed wide length distribution. The length of the platelets and SFC were related to the oil migration value. These results suggest that the oil binding ability of fat products, such as margarine, is influenced by the nanostructure, which is related to fatty acid composition and interfacial structure.


Assuntos
Fenômenos Químicos , Gorduras/química , Nanoestruturas , Óleos/química , Transição de Fase , Água/química , Animais , Cristalização , Gorduras na Dieta , Emulsões , Ácidos Graxos/química , Hidrogenação , Margarina , Leite , Ácido Oleico , Ácidos Oleicos , Óleo de Palmeira/química , Tamanho da Partícula , Óleo de Soja/química , Difração de Raios X
11.
Sci Rep ; 8(1): 10776, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018364

RESUMO

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), is classified into two subgroups, Stx1 and Stx2. Clinical data clearly indicate that Stx2 is associated with more severe toxicity than Stx1, but the molecular mechanism underlying this difference is not fully understood. Here, we found that after being incorporated into target cells, Stx2, can be transported by recycling endosomes, as well as via the regular retrograde transport pathway. However, transport via recycling endosome did not occur with Stx1. We also found that Stx2 is actively released from cells in a receptor-recognizing B-subunit dependent manner. Part of the released Stx2 is associated with microvesicles, including exosome markers (referred to as exo-Stx2), whose origin is in the multivesicular bodies that formed from late/recycling endosomes. Finally, intravenous administration of exo-Stx2 to mice causes more lethality and tissue damage, especially severe renal dysfunction and tubular epithelial cell damage, compared to a free form of Stx2. Thus, the formation of exo-Stx2 might contribute to the severity of Stx2 in vivo, suggesting new therapeutic strategies against EHEC infections.


Assuntos
Exossomos/metabolismo , Toxina Shiga II/toxicidade , Fatores de Virulência/toxicidade , Animais , Transporte Biológico , Endossomos/metabolismo , Rim/efeitos dos fármacos , Camundongos , Toxina Shiga II/metabolismo , Fatores de Virulência/metabolismo
12.
Brain Nerve ; 70(6): 639-649, 2018 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-29887533

RESUMO

Cryo-electron microscopy (cryo-EM) includes three technical methods, (1) rapid freezing for vitreous ice-embedding, (2) observation of frozen hydrated specimens, and (3) image processing for three-dimensional structural analysis. The three-dimensional structural analysis can be performed in three different ways. Electron crystallography can decipher the structure of membrane proteins at the highest resolution (atomic level). Single particle analysis now allows the determiration of the structure of highly purified proteins and complexes (non-crystalline biomolecules) in solution at the near-atomic level. Electron tomography can reveal the three-dimensional structure of an ultrathin-section of the cells and/or tissues. The resolution of the structure obtained by electron tomography is not very high (nm level), however it is possible to reveal the individual structures of biomolecular assemblies or cellular organelles, in close-to-native condition in the cell. A technical development for cryo-EM should be the introduction of a new CMOS camera for the direct detection of electrons. Using such camera, a short movie (usually 2-3 seconds), comprising numerous images with a few hundred milliseconds exposure each can be recorded. Such a movie has a demonstrated value, as it can compensate for the specimen motion induced by irradiation of electron beam. Improvements in image processing algorithms and computer programs are also essential for achieving three-dimensional structures at a better resolution.


Assuntos
Algoritmos , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Proteínas de Membrana/química , Movimento (Física)
13.
Sci Rep ; 8(1): 8019, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29769584

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Microscopy (Oxf) ; 67(3): 164-170, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509921

RESUMO

Casein micelles are present in bovine milk as colloidal particles with diameters of 20-600 nm, which are complex macromolecular assemblies composed of four distinct types of casein and colloidal calcium phosphate (CCP). Multiple structural models of casein micelles have been proposed based on their biochemical or physical properties and observed using electron microscopy. However, the CCP distribution and crosslinking structure between CCP and casein remain unclear. Therefore, the internal structure of casein micelles in raw milk was observed using cryo-electron microscopy of vitreous sections (CEMOVIS) with high precision at high resolution. The results confirmed that the average casein micelle diameter was about 140 nm, and that the CCP diameter in casein micelles was about 2-3 nm, with an average diameter of 2.3 nm. The distribution of CCP in casein micelles was not uniform, with an average interval between CCPs of about 5.4 nm. Areas containing no black particles (attributed to CCP) were present, with an average size of about 19.1 nm. Considering previous reports, these areas possibly correspond to pores or cavities filled with water. Based on differences in the density of structures in casein micelles, we estimated that some of the casein aggregates were able to connect with CCP in a string.


Assuntos
Caseínas/metabolismo , Microscopia Crioeletrônica/métodos , Micelas , Leite/metabolismo , Animais , Fosfatos de Cálcio/metabolismo , Bovinos , Alimentos Crus/análise
15.
Sci Rep ; 7(1): 16386, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180624

RESUMO

Although α-synuclein (αSyn) has been linked to Parkinson's disease (PD), the mechanisms underlying the causative role in PD remain unclear. We previously proposed a model for a transportable microtubule (tMT), in which dynein is anchored to a short tMT by LIS1 followed by the kinesin-dependent anterograde transport; however the mechanisms that produce tMTs have not been determined. Our in vitro investigations of microtubule (MT) dynamics revealed that αSyn facilitates the formation of short MTs and preferentially binds to MTs carrying 14 protofilaments (pfs). Live-cell imaging showed that αSyn co-transported with dynein and mobile ßIII-tubulin fragments in the anterograde transport. Furthermore, bi-directional axonal transports are severely affected in αSyn and γSyn depleted dorsal root ganglion neurons. SR-PALM analyses further revealed the fibrous co-localization of αSyn, dynein and ßIII-tubulin in axons. More importantly, 14-pfs MTs have been found in rat femoral nerve tissue, and they increased approximately 19 fold the control in quantify upon nerve ligation, indicating the unconventional MTs are mobile. Our findings indicate that αSyn facilitates to form short, mobile tMTs that play an important role in the axonal transport. This unexpected and intriguing discovery related to axonal transport provides new insight on the pathogenesis of PD.


Assuntos
Transporte Axonal , Axônios/metabolismo , Microtúbulos/metabolismo , alfa-Sinucleína/metabolismo , Animais , Axônios/ultraestrutura , Cromatografia Líquida , Nervo Femoral/metabolismo , Nervo Femoral/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Microtúbulos/química , Neurônios/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteoma , Proteômica/métodos , Ratos , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
16.
Microscopy (Oxf) ; 66(3): 204-208, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339813

RESUMO

In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent.

17.
Microscopy (Oxf) ; 64(6): 459-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26470916

RESUMO

In order to analyse the internal structures of multi-component fluid materials such as emulsions (including the inter-particle spacing) by cryo-electron microscopy, it is necessary to observe their smooth cross-sectional surfaces over wide areas. We have developed a system that involves the following steps: preservation of the structure of an emulsion adhesive using freeze fixation in its normal (moist) state and during the drying process after being coated, preparation of cross sections of the internal structure using a cryo-ultramicrotome and then transferral of the cross sections into a cryo-scanning electron microscope for observation via a cryo-transfer system. This system allows the direct observation of the cross sections of emulsions and of several fluid materials.

18.
Photosynth Res ; 126(2-3): 437-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26149177

RESUMO

The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.


Assuntos
Diatomáceas/metabolismo , Xantofilas/metabolismo , Proteínas de Transporte/metabolismo , Clorofila/metabolismo , Clorofila A , Diatomáceas/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/metabolismo
19.
Neurosci Res ; 101: 6-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188126

RESUMO

The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Densidade Pós-Sináptica/ultraestrutura , Proteólise , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Hipóxia Celular , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Feminino , Glucose/metabolismo , Masculino , N-Metilaspartato/farmacologia , Densidade Pós-Sináptica/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
20.
Sci Rep ; 4: 6384, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25223459

RESUMO

We observed the dynamic three-dimensional (3D) single molecule behaviour of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) using a single molecule tracking technique, diffracted X-ray tracking (DXT) with atomic scale and 100 µs time resolution. We found that the combined tilting and twisting motions of the proteins were enhanced upon acetylcholine (ACh) binding. We present the internal motion maps of AChBP and nAChR in the presence of either ACh or α-bungarotoxin (αBtx), with views from two rotational axes. Our findings indicate that specific motion patterns represented as biaxial angular motion maps are associated with channel function in real time and on an atomic scale.


Assuntos
Acetilcolina/química , Bungarotoxinas/química , Proteínas de Transporte/química , Receptores Nicotínicos/química , Acetilcolina/metabolismo , Animais , Aplysia/crescimento & desenvolvimento , Aplysia/metabolismo , Sítios de Ligação , Bungarotoxinas/metabolismo , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Receptores Nicotínicos/metabolismo , Torpedo/crescimento & desenvolvimento , Torpedo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...