Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(12): 2349-2356, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38501814

RESUMO

A method to predict the D tensor in the molecular frame with multiconfigurational wave functions in large active space was proposed, and the spin properties of the lowest triplets of aromatic molecules were examined with full-π active space; such calculations were challenging because the size of active space grows exponentially with the number of π electrons. In this method, the exponential growth of complexity is resolved by the density matrix renormalization group (DMRG) algorithm. From the D tensor, we can directly determine the direction of the magnetic axes and the ZFS parameters, D- and E-values, of the phenomenological spin Hamiltonian with their signs, which are not usually obtained in ESR experiments. The method using the DMRG-CASSCF wave function can give correct results even when the sign of D- and E-values is sensitive to the accuracy of the prediction of the D tensor and existing methods fail to predict the correct magnetic axes.

2.
Proc Natl Acad Sci U S A ; 120(44): e2307926120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871226

RESUMO

Triplet dynamic nuclear polarization (triplet-DNP) is a technique that can obtain high nuclear polarization under moderate conditions. However, in order to obtain practically useful polarization, large single crystals doped with a polarizing agent must be strictly oriented with respect to the magnetic field to sharpen the electron spin resonance (ESR) spectra, which is a fatal problem that prevents its application to truly useful biomolecular targets. Instead of this conventional physical approach of controlling crystal orientation, here, we propose a chemical approach, i.e., molecular design of polarizing agents; pentacene molecules, the most typical triplet-DNP polarizing agent, are modified so as to make the triplet electron distribution wider and more isotropic without loss of the triplet polarization. The thiophene-modified pentacene exhibits a sharper and stronger ESR spectrum than the parent pentacene, and state-of-the-art quantum chemical calculations revealed that the direction of the spin polarization is altered by the modification with thiophene moieties and the size of D and E parameters are reduced from parent pentacene due to the partial delocalization of spin densities on the thiophene moieties. The triplet-DNP with the new polarizing agent successfully exceeds the previous highest 1H polarization of glassy materials by a factor of 5. This demonstrates the feasibility of a polarizing agent that can surpass pentacene, the best polarizing agent for more than 30 y since triplet-DNP was first reported, in the unoriented state. This work provides a pathway toward practically useful high nuclear polarization of various biomolecules by triplet-DNP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...