Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Auris Nasus Larynx ; 51(3): 472-480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520980

RESUMO

OBJECTIVE: Although there have been brilliant advancements in the practical application of therapies targeting immune checkpoints, achieving success in targeting the microenvironment remains elusive. In this study, we aimed to address this gap by focusing on Na+ / H+ exchanger 1 (NHE1) and Lysyl Oxidase Like 2 (LOXL2), which are upregulated in head and neck squamous cell carcinoma (HNSCC) cells. METHODS: The malignancy of a metastatic human HNSCC cell line was assessed in a mouse tongue cancer xenograft model by knocking down (KD) NHE1, responsible for regulating intracellular pH, and LOXL2, responsible for extracellular matrix (ECM) reorganization via cross-linking of ECM proteins. In addition to assessing changes in PD-L1 levels and collagen accumulation following knockdown, the functional status of the PD-L1 / PD-1 immune checkpoint was examined through co-culture with NK92MI, a PD-1 positive phagocytic human Natural Killer (NK) cell line. RESULTS: The tumorigenic potential of each single KD cell line was similar to that of the control cells, whereas the potential was attenuated in cells with simultaneous KD of both factors (double knockdown [dKD]). Additionally, we observed decreased PD-L1 levels in NHE1 KD cells and compromised collagen accumulation in LOXL2 KD and dKD cells. NK92MI cells exhibited phagocytic activity toward HNSCC cells in co-culture, and the number of remaining dKD cells after co-culture was the lowest in comparison to the control and single KD cells. CONCLUSION: This study demonstrated the possibility of achieving efficient anti-tumor effects by simultaneously disturbing multiple factors involved in the modification of the tumor microenvironment.


Assuntos
Aminoácido Oxirredutases , Neoplasias de Cabeça e Pescoço , Trocador 1 de Sódio-Hidrogênio , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Humanos , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , Neoplasias da Língua/metabolismo , Microambiente Tumoral , Técnicas de Silenciamento de Genes , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Carcinogênese/genética , Colágeno/metabolismo , Células Matadoras Naturais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética
2.
J Biochem ; 174(2): 131-142, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37039781

RESUMO

The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) system plays a central role in redox homeostasis and inflammation control. Oxidative stress or electrophilic compounds promote NRF2 stabilization and transcriptional activity by negatively regulating its inhibitor, KEAP1. We have previously reported that bromovalerylurea (BU), originally developed as a hypnotic, exerts anti-inflammatory effects in various inflammatory disease models. However, the molecular mechanism underlying its effect remains uncertain. Herein, we found that by real-time multicolor luciferase assay using stable luciferase red3 (SLR3) and green-emitting emerald luciferase (ELuc), BU potentiates NRF2-dependent transcription in the human hepatoblastoma cell line HepG2 cells, which lasted for more than 60 h. Further analysis revealed that BU promotes NRF2 accumulation and the transcription of its downstream cytoprotective genes in the HepG2 and the murine microglial cell line BV2. Keap1 knockdown did not further enhance NRF2 activity, suggesting that BU upregulates NRF2 by targeting KEAP1. Knockdown of Nfe2l2 in BV2 cells diminished the suppressive effects of BU on the production of pro-inflammatory mediators, like nitric oxide (NO) and its synthase NOS2, indicating the involvement of NRF2 in the anti-inflammatory effects of BU. These data collectively suggest that BU could be repurposed as a novel NRF2 activator to control inflammation and oxidative stress.


Assuntos
Bromisoval , Fator 2 Relacionado a NF-E2 , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Bromisoval/farmacologia , Hipnóticos e Sedativos/farmacologia , Estresse Oxidativo , Oxirredução , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
3.
J Biol Chem ; 297(2): 100989, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298014

RESUMO

Insulin-induced genes (INSIGs) encode endoplasmic reticulum-resident proteins that regulate intracellular cholesterol metabolism. Oxysterols are oxygenated derivatives of cholesterol, some of which orchestrate lipid metabolism via interaction with INSIGs. Recently, it was reported that expression of activating transcription factor-4 (ATF4) was induced by certain oxysterols; the precise of mechanism is unclear. Herein, we show that INSIGs mediate ATF4 upregulation upon interaction with oxysterol. Oxysterols that possess a high affinity for INSIG, such as 27- and 25-hydroxycholesterol (25HC), markedly induced the increase of ATF4 protein when compared with other oxysterols. In addition, ATF4 upregulation by these oxysterols was attenuated in INSIG1/2-deficient Chinese hamster ovary cells and recovered by either INSIG1 or INSIG2 rescue. Mechanistic studies revealed that the binding of 25HC to INSIG is critical for increased ATF4 protein via activation of protein kinase RNA-activated-like ER kinase and eukaryotic translation initiation factor 2α. Knockout of INSIG1 or INSIG2 in human hepatoma Huh7 cells attenuated ATF4 protein upregulation, indicating that only one of the endogenous INSIGs, unlike overexpression of intrinsic INSIG1 or INSIG2, was insufficient for ATF4 induction. Furthermore, ATF4 proactively upregulated the cell death-inducible gene expression, such as Chop, Chac1, and Trb3, thereby markedly reducing cell viability with 25HC. These findings support a model whereby that INSIGs sense an increase in oxysterol in the endoplasmic reticulum and induce an increase of ATF4 protein via the protein kinase RNA-activated-like ER kinase-eukaryotic translation initiation factor 2α pathway, thereby promoting cell death.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Oxisteróis/metabolismo , eIF-2 Quinase/metabolismo , Animais , Apoptose , Células Cultivadas , Cricetinae , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Transdução de Sinais
4.
Sci Rep ; 6: 28183, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312476

RESUMO

Soy protein ß-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of ß-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced ß-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, ß-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary ß-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.


Assuntos
Antígenos de Plantas/farmacologia , Proteínas Alimentares/sangue , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/sangue , Globulinas/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Armazenamento de Sementes/farmacologia , Proteínas de Soja/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo , Período Pós-Prandial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...