Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11574, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773165

RESUMO

The current monochromatic beam mode (i.e., uHDR irradiation mode) of the scanned carbon-ion beam lacks a dedicated dose monitor, making the beam control challenging. We developed and characterized a dedicated dose monitor for uHDR-scanned carbon-ion beams. Furthermore, a simple measurable dose rate (dose rate per spot (DRspot)) was suggested by using the developed dose monitor and experimentally validating quantities relevant to the uHDR scanned carbon-ion beam. A large plane-parallel ionization chamber (IC) with a smaller electrode spacing was used to reduce uHDR recombination effects, and a dedicated operational amplifier was manufactured for the uHDR-scanned carbon-ion beam. The dose linearity of the IC was within ± 1% in the range of 1.8-12.3 Gy. The spatial inhomogeneity of the dose response of the IC was ± 0.38% inside the ± 40-mm detector area, and a systematic deviation of approximately 2% was measured at the edge of the detector. uHDR irradiation with beam scanning was tested and verified for different doses at the corresponding dose rates (in terms of both the average dose rate and DRspot). We confirmed that the dose monitor can highlight the characteristics (i.e., dose, dose rate, and dose profile) of uHDR-scanned carbon-ion beams at several dose levels in the monochromatic beam mode.

2.
Phys Med Biol ; 68(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37429310

RESUMO

Objective.FLASH radiation therapy with ultrahigh dose rates (UHDR) has the potential to reduce damage to normal tissue while maintaining anti-tumor efficacy. However, rapid and precise dose distribution measurements remain difficult for FLASH radiation therapy with proton beams. To solve this problem, we performed luminescence imaging of water following irradiation by a UHDR proton beam captured using a charge-coupled device camera.Approach. We used 60 MeV proton beams with dose rates of 0.03-837 Gy s-1from a cyclotron. Therapeutic 139.3 MeV proton beams with dose rates of 0.45-4320 Gy s-1delivered by a synchrotron-based proton therapy system were also tested. The luminescent light intensity induced by the UHDR beams was compared with that produced by conventional beams to compare the dose rate dependency of the light intensity and its profile.Main results. Luminescence images of water were clearly visualized under UHDR conditions, with significantly shorter exposure times than those with conventional beams. The light intensity was linearly proportional to the delivered dose, which is similar to that of conventional beams. No significant dose-rate dependency was observed for 0.03-837 Gy s-1. The light-intensity profiles of the UHDR beams agreed with those of conventional beams. The results did not differ between accelerators (synchrotron or cyclotron) and beam energies.Significance. Luminescence imaging of water is achievable with UHDR proton beams as well as with conventional beams. The proposed method should be suitable for rapid and easy quality assurance investigations for proton FLASH therapy, because it facilitates real-time, filmless measurements of dose distributions, and is useful for rapid feedback.


Assuntos
Terapia com Prótons , Lesões por Radiação , Humanos , Prótons , Luminescência , Água , Terapia com Prótons/métodos , Luz , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...