Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21397, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027876

RESUMO

Cutaneous leishmaniasis (CL) is a parasitic disease caused by the bite of infectious female sand flies with high socioeconomic burdens. There is currently no non-invasive, point-of-care, diagnostic method with high sensitivity and specificity available for CL. We herein report the development of a non-invasive tape disc (TD) sampling method combined with a loop-mediated isothermal amplification (LAMP) assay using primer sets targeting kinetoplast DNA (kDNA) of Leishmania tropica (L. tropica) with a colorimetric readout for species-specific diagnosis of CL. We tested our Tape-Disc (TD)-LAMP method on a panel of skin samples collected by TD from 35 confirmed L. tropica patients, 35 healthy individuals and 35 patients with non-L. tropica infections. The detection limit of the TD-LAMP assay was determined as 1 fg (fg), and the assay sensitivity and specificity of 97 % and 100 % for L. tropica infection, respectively. This non-invasive, sensitive and rapid diagnostic method warrants further exploration of its use for differential diagnosis of CL in disease endemic settings.

2.
Front Cell Infect Microbiol ; 12: 921410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992172

RESUMO

Leishmania (L.) species are protozoan parasites with a complex life cycle consisting of a number of developmental forms that alternate between the sand fly vector and their host. The non-pathogenic species L. tarentolae is not able to induce an active infection in a human host. It has been observed that, in pathogenic species, extracellular vesicles (EVs) could exacerbate the infection. However, so far, there is no report on the identification, isolation, and characterization of L. tarentolae EVs. In this study, we have isolated and characterized EVs from L. tarentolae GFP+ (tEVs) along with L. major GFP+ as a reference and positive control. The EVs secreted by these two species demonstrated similar particle size distribution (approximately 200 nm) in scanning electron microscopy and nanoparticle tracking analysis. Moreover, the said EVs showed similar protein content, and GFP and GP63 proteins were detected in both using dot blot analysis. Furthermore, we could detect Leishmania-derived GP63 protein in THP-1 cells treated with tEVs. Interestingly, we observed a significant increase in the production of IFN-γ, TNF-α, and IL-1ß, while there were no significant differences in IL-6 levels in THP-1 cells treated with tEVs following an infection with L. major compared with another group of macrophages that were treated with L. major EVs prior to the infection. Another exciting observation of this study was a significant decrease in parasite load in tEV-treated Leishmania-infected macrophages. In addition, in comparison with another group of Leishmania-infected macrophages which was not exposed to any EVs, tEV managed to increase IFN-γ and decrease IL-6 and the parasite burden. In conclusion, we report for the first time that L. tarentolae can release EVs and provide evidence that tEVs are able to control the infection in human macrophages, making them a great potential platform for drug delivery, at least for parasitic infections.


Assuntos
Vesículas Extracelulares , Leishmania , Parasitos , Psychodidae , Animais , Humanos , Interleucina-6 , Camundongos , Camundongos Endogâmicos BALB C
3.
Sci Rep ; 10(1): 16198, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004861

RESUMO

Anthroponotic cutaneous leishmaniasis (CL) caused by Leishmania tropica (L. tropica) represents a public health challenge in several resource poor settings. We herein employed a systems analysis approach to study molecular signatures of CL caused by L. tropica in the skin lesions of ulcerative CL (UCL) and non-ulcerative CL (NUCL) patients. Results from RNA-seq analysis determined shared and unique functional transcriptional pathways in the lesions of the UCL and NUCL patients. Several transcriptional pathways involved in inflammatory response were positively enriched in the CL lesions. A multiplexed inflammatory protein analysis showed differential profiles of inflammatory cytokines and chemokines in the UCL and NUCL lesions. Transcriptional pathways for Fcγ receptor dependent phagocytosis were among shared enriched pathways. Using L. tropica specific antibody (Ab)-mediated phagocytosis assays, we could substantiate Ab-dependent cellular phagocytosis (ADCP) and Ab-dependent neutrophil phagocytosis (ADNP) activities in the lesions of the UCL and NUCL patients, which correlated with L. tropica specific IgG Abs. Interestingly, a negative correlation was observed between parasite load and L. tropica specific IgG/ADCP/ADNP in the skin lesions of CL patients. These results enhance our understanding of human skin response to CL caused by L. tropica.


Assuntos
Biomarcadores/análise , Leishmania tropica/isolamento & purificação , Leishmaniose Cutânea/diagnóstico , Carga Parasitária/estatística & dados numéricos , RNA-Seq/métodos , Pele/patologia , Estudos de Casos e Controles , Citocinas/análise , Humanos , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Pele/metabolismo , Pele/parasitologia
4.
Expert Rev Proteomics ; 17(7-8): 533-541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886890

RESUMO

INTRODUCTION: Cutaneous leishmaniasis (CL), caused by different Leishmania parasite species, is associated with parasite-induced immune-mediated skin inflammation and ulceration. Whereas many CL studies focus on gene expression signatures in mouse models, the transcriptional response driving human patients in the field is less characterized. Human studies in CL disease provide the opportunity to directly investigate the host-pathogen interaction in the cutaneous lesion site. AREAS COVERED: Advances in high-throughput sequencing technologies, particularly their application for evaluation of the global gene expression changes, have made transcriptomics as a powerful tool to understand the pathogen-host molecular interactions. EXPERT COMMENTARY: In this review, we focus on the transcriptomics studies that have been performed so far on human blood or tissue-driven samples to investigate Leishmania parasites interplay with the CL patients. Further, we summarize microarray and RNA-seq studies associated with lesion biopsies of CL patients to discuss how current whole genome analysis along with systems biology approaches have developed novel CL biomarkers for further applications, not only for research, but also for accelerating vaccine development.


Assuntos
Processamento Alternativo , Interações Hospedeiro-Patógeno/genética , Leishmaniose Cutânea/genética , Transcriptoma/genética , Biologia Computacional , Humanos , Leishmania/patogenicidade , Leishmaniose Cutânea/parasitologia , RNA-Seq
5.
Cytokine ; 130: 155056, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32199248

RESUMO

BACKGROUND: Cutaneous leishmaniasis (CL) is an infection caused by Leishmania (L.) protozoa transmitted through the bite of infected sand fly. Previously, invasive sampling of blood and skin along with low throughput methods were used for determination of inflammatory response in CL patients. AIMS/METHODOLOGY: We established a novel approach based on a non-invasive adhesive tape-disc sampling combined with a powerful multiplexing technique called proximity extension assay for profiling 92 inflammatory cytokines, chemokines and surface molecules in the lesions of CL patients infected with L. tropica. Sample collection was done non-invasively by using adhesive tape-discs from lesion and normal skin of 33 L. tropica positive patients. RESULTS: Out of 92 inflammatory proteins, the level of 34 proteins was significantly increased in the lesions of CL patients compared to their normal skin. This includes the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL5, CXCL9, CXCL10 and CXCL11, together with the interleukins IL-6, IL-8, IL-18, LIF and OSM. The remaining significantly changed inflammatory proteins include 7 surface molecules and receptors: CD5, CD40, CDCP1, 4E-BP1, TNFRSF9, IL-18R1 and OPG as well as 16 other cytokines and proteins: MMP-1, CSF-1, VEGFA, uPA, EN-RAGE, LAP TGF-ß1, HGF, MMP-10, CASP-8, TNFSF14, STAMPB, ADA, TRAIL and ST1A1. Further, 13 proteins showed an increasing trend, albeit not statistically significant, in the CL lesions, including TGF-α, CCL23, MCP-2, IL-12B, CXCL6, IL-24, FGF-19, TNFß, CD6, TRANCE, IL10, SIR2 and CCL20. CONCLUSION: We herein report a novel approach based on a non-invasive sampling method combined with the high-throughput protein assay for profiling inflammatory proteins in CL lesions. Using this approach, we could profile inflammatory proteins in the lesions from CL patients. This new non-invasive approach may have implications for studying skin inflammatory mediators in CL and other skin disorders.

7.
PLoS Negl Trop Dis ; 13(1): e0007067, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633742

RESUMO

BACKGROUND: The vector-borne disease leishmaniasis is transmitted to humans by infected female sand flies, which transmits Leishmania parasites together with saliva during blood feeding. In Iran, cutaneous leishmaniasis (CL) is caused by Leishmania (L.) major and L. tropica, and their main vectors are Phlebotomus (Ph.) papatasi and Ph. sergenti, respectively. Previous studies have demonstrated that mice immunized with the salivary gland homogenate (SGH) of Ph. papatasi or subjected to bites from uninfected sand flies are protected against L. major infection. METHODS AND RESULTS: In this work we tested the immune response in BALB/c mice to 14 different plasmids coding for the most abundant salivary proteins of Ph. sergenti. The plasmid coding for the salivary protein PsSP9 induced a DTH response in the presence of a significant increase of IFN-γ expression in draining lymph nodes (dLN) as compared to control plasmid and no detectable PsSP9 antibody response. Animals immunized with whole Ph. sergenti SGH developed only a saliva-specific antibody response and no DTH response. Mice immunized with whole Ph. sergenti saliva and challenged intradermally with L. tropica plus Ph. sergenti SGH in their ears, exhibited no protective effect. In contrast, PsSP9-immunized mice showed protection against L. tropica infection resulting in a reduction in nodule size, disease burden and parasite burden compared to controls. Two months post infection, protection was associated with a significant increase in the ratio of IFN-γ to IL-5 expression in the dLN compared to controls. CONCLUSION: This study demonstrates that while immunity to the whole Ph. sergenti saliva does not induce a protective response against cutaneous leishmaniasis in BALB/c mice, PsSP9, a member of the PpSP15 family of Ph. sergenti salivary proteins, provides protection against L. tropica infection. These results suggest that this family of proteins in Ph. sergenti, Ph. duboscqi and Ph. papatasi may have similar immunogenic and protective properties against different Leishmania species. Indeed, this anti-saliva immunity may act as an adjuvant to accelerate the cell-mediated immune response to co-administered Leishmania antigens, or even cause the activation of infected macrophages to remove parasites more efficiently. These findings highlight the idea of applying arthropod saliva components in vaccination approaches for diseases caused by vector-borne pathogens.


Assuntos
Leishmania tropica/imunologia , Leishmaniose Cutânea/prevenção & controle , Phlebotomus/imunologia , Proteínas e Peptídeos Salivares/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Animais , Modelos Animais de Doenças , Feminino , Hipersensibilidade Tardia , Interferon gama/biossíntese , Camundongos Endogâmicos BALB C , Phlebotomus/genética , Proteínas e Peptídeos Salivares/genética
8.
Acta Trop ; 176: 236-241, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28842129

RESUMO

Leishmania (L.) tropica is the main causative agent of anthroponotic cutaneous leishmaniasis (CL) in Iran. Defining the host inflammatory response in the L. tropica lesions are crucial for the development of new treatment modalities. High-throughput RNA sequencing provides a powerful method for characterization of the human gene expression profile in L. tropica lesions. Comparing the transcription profile of the L. tropica skin lesions with normal skin identified over 5000 differentially regulated genes. Gene set enrichment analysis indicated significant activation of key immunological pathways related to antigen processing and presentation. In addition, we observed a substantial upregulation of immunoglobulin genes in lesion samples, highlighting the remarkable involvement of B cells in the infection site. To our knowledge, this study is the first report to build a comprehensive picture of transcriptome changes in acute human skin lesions during infection by L. tropica.


Assuntos
Leishmania tropica/genética , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Humanos , Irã (Geográfico)
9.
Development ; 143(22): 4137-4148, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707793

RESUMO

MicroRNAs (miRNAs) are important regulators of skeletal muscle regeneration, but the underlying mechanisms are still incompletely understood. Here, comparative miRNA sequencing analysis of myogenic progenitor cells (MPs) and non-myogenic fibroblast-adipocyte progenitors (FAPs) during cardiotoxin (CTX)-induced muscle injury uncovered miR-501 as a novel muscle-specific miRNA. miR-501 is an intronic miRNA and its expression levels in MPs correlated with its host gene, chloride channel, voltage-sensitive 5 (Clcn5). Pharmacological inhibition of miR-501 dramatically blunted the induction of embryonic myosin heavy chain (MYH3) and, to a lesser extent, adult myosin isoforms during muscle regeneration, and promoted small-diameter neofibers. An unbiased target identification approach in primary myoblasts validated gigaxonin as a target of miR-501 that mimicked the effect of miR-501 inhibition on MYH3 expression. In the mdx mouse model, which models a pathological disease state, not only was miR-501 induced in regenerating skeletal muscle, but also its serum levels were increased, which correlated with the disease state of the animals. Our results suggest that miR-501 plays a key role in adult muscle regeneration and might serve as a novel serum biomarker for the activation of adult muscle stem cells.


Assuntos
Células-Tronco Adultas/metabolismo , MicroRNAs/genética , Músculo Esquelético/fisiologia , Regeneração/genética , Adulto , Animais , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Análise de Sequência de RNA
10.
Appl Microbiol Biotechnol ; 100(17): 7377-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27435294

RESUMO

Production of therapeutic or medical recombinant proteins, such as monoclonal antibodies, proteins, or active enzymes, requires a highly efficient system allowing natural folding and perfect post-translation modifications of the expressed protein. These requirements lead to the generation of a variety of gene expression systems from bacteria to eukaryotes. To achieve the best form of eukaryotic proteins, two factors need to be taken into consideration: choosing a suitable organism to express the protein of interest, and selecting an efficient delivery system. For this reason, the expression of recombinant proteins in eukaryotic nonpathogenic Leishmania parasites is an interesting approach which meets both criteria. Here, new Leishmania-based expression systems are compared with current systems that have long histories in research and industry.


Assuntos
Clonagem Molecular/métodos , Leishmania/genética , Leishmania/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Expressão Gênica/genética
11.
Stem Cells ; 34(3): 768-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26731484

RESUMO

The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling.


Assuntos
Diferenciação Celular/genética , Fator 2 de Crescimento de Fibroblastos/biossíntese , MicroRNAs/genética , Regeneração , Animais , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Cicatrização/genética
12.
Parasitol Res ; 109(3): 793-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21442256

RESUMO

Several species of protozoan parasites of the genus Leishmania are pathogenic to mammals and cause a wide spectrum of pathologies in human. However, the genus includes some species which infect reptiles. Leishmania tarentolae is a lizard pathogen absolutely nonpathogenic to mammals. Recent studies have shown that among some major virulence factors, A2 is absent in this species. First identified as an amastigote-specific gene in Leishmania donovani, A2 has been proved to play a major role in parasite virulence and visceralization capability. In this study, we have transfected A2 episomally into L. tarentolae and evaluated its effect on infectivity and survival of the parasites, in vitro and in vivo. During infection of in vitro-cultured intraperitoneal macrophages of BALB/c mice, A2-expressing L. tarentolae parasites demonstrated significantly higher level of infectivity in days 3 and 4 post-infection in comparison with the wild-type strain as control. Furthermore, in vivo infection showed that A2 has significantly increased the ability of L. tarentolae to survive in the liver of BALB/c mice. Altogether, our results show that A2 is functional in L. tarentolae, although through an unknown mechanism, and loss of A2 has been one of the factors partly contributing to the loss of virulence of L. tarentolae.


Assuntos
Antígenos de Protozoários/metabolismo , Leishmania/patogenicidade , Fatores de Virulência/metabolismo , Animais , Antígenos de Protozoários/genética , Sobrevivência Celular , Células Cultivadas , DNA de Protozoário/química , DNA de Protozoário/genética , Feminino , Fígado/parasitologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Análise de Sequência de DNA , Transfecção , Virulência , Fatores de Virulência/genética
13.
Vaccine ; 28(1): 53-62, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19818721

RESUMO

Visceral leishmaniasis is the most severe form of leishmaniasis. To date, there is no effective vaccine against this disease. Many antigens have been examined so far as protein- or DNA-based vaccines, but none of them conferred complete long-term protection. The use of live attenuated vaccines has recently emerged as a promising vaccination strategy. In this study, we stably expressed the Leishmania donovani A2 antigen in Leishmania tarentolae, a non-pathogenic member of the genus Leishmania, and evaluated its protective efficacy as a live vaccine against L. infantum challenge. Our results show that a single intraperitoneal administration of the A2-recombinant L. tarentolae strain protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-gamma production prior and after challenge. This is accompanied by reduced levels of IL-5 production after challenge, leading to a potent Th1 immune response. In contrast, intravenous injection elicited a Th2 type response, characterized by higher levels of IL-5 and high humoral immune response, resulting in a less efficient protection. All together, these results indicate the promise of A2-expressing L. tarentolae as a safe live vaccine against visceral leishmaniasis.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , DNA de Protozoário/isolamento & purificação , Feminino , Imunidade Celular , Imunidade Humoral , Injeções Intraperitoneais , Injeções Intravenosas , Interferon gama/imunologia , Interleucina-5/genética , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia , Células Th2
14.
Genes Genet Syst ; 84(6): 425-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20228580

RESUMO

Promoters, the genomic regions proximal to the transcriptional start sites (TSSs) play pivotal roles in determining the rate of transcription initiation by serving as direct docking platforms for the RNA polymerase II complex. In the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation. Species-independent promoter prediction tools could also be useful in meta-genomics, since transcription data will not be available for micro-organisms which are not cultivated. Promoter prediction in prokaryotic genomes presents unique challenges owing to their organizational properties. Several methods have been developed to predict the promoter regions of genomes in prokaryotes, including algorithms for recognition of sequence motifs, artificial neural networks, and algorithms based on genome's structure. However, none of them satisfies both criteria of sensitivity and precision. In this work, we present a modified artificial neural network fed by nearest neighbors based on DNA duplex stability, named N4, which can predict the transcription start sites of Escherichia coli with sensitivity and precision both above 94%, better than most of the existed algorithms.


Assuntos
Algoritmos , Redes Neurais de Computação , Regiões Promotoras Genéticas/genética , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Sítio de Iniciação de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...