Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(4): e57568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707053

RESUMO

Introduction Blast injuries in modern society often occur owing to terrorist attacks in confined spaces, particularly in urban settings, indoors, and in vehicles, leading to significant damage. Therefore, it is important to focus on blast injuries in confined spaces rather than in conventional open-field experiments. Materials and methods We used an air-driven shock wave generator (blast tube) established indoors in 2017 and conducted basic research to potentially save the lives of patients with blast injuries. Under general anesthesia, pigs were divided into with body armor (BA) and without BA groups. The pigs were fixed in the measurement chamber with their dorsal chest directly exposed to the shock wave. The driving pressure was set at 3.0 MPa to achieve a mortality rate of approximately 50%. A generated shock wave was directly applied to the pigs. Comparisons were made between the groups with respect to cardiac arrest and survival, as well as apnea, bradycardia, and hypotension, which are the triad of blast lung. Autopsies were performed to confirm the extent of the organ damage. Statistical analysis was performed using Fisher's exact test, and statistical significance was set at p<0.05. The animal experimentation was conducted according to the protocol reviewed and approved by the Animal Ethics Committee of the National Defense Medical College Hospital (approval number 19041). Results Eight pigs were assigned to the BA group and seven pigs to the non-BA group. In the non-BA group, apnea was observed in four of seven cases, three of which resulted in death. None of the eight pigs in the BA group had respiratory arrest; notably, all survived. Hypotension was observed in some pigs in each group; however, there were no cases of bradycardia in either group. Statistical analysis showed that wearing BA significantly reduced the occurrence of respiratory and cardiac arrest (p=0.026) but not survival (p=0.077). No significant differences were found in other vital signs. Conclusions Wearing BA with adequate neck and chest protection reduced mortality and it was effective to reduce cardiac and respiratory arrest against shock wave exposure. Mortality from shock wave injury appears to be associated with respiratory arrest, and the avoidance of respiratory arrest may lead to survival.

2.
Ann Biomed Eng ; 49(10): 2944-2956, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33686618

RESUMO

The purpose of this study was to clarify whether or not body armor would protect the body of a swine model using a blast tube built at National Defense Medical College, which is the first such blast tube in Japan. Seventeen pigs were divided into two groups: the body armor group and the non-body armor group. Under intravenous anesthesia, the pigs were tightly fixed in the left lateral position on a table and exposed from the back neck to the upper lumbar back to the blast wave and wind with or without body armor, with the driving pressure of the blast tube set to 3.0 MPa. When the surviving and dead pigs were compared, blood gas analyses revealed significant differences in PaO2, PaCO2, and pH in the super-early phase. All pigs injured by the blast wave and wind had lung hemorrhage. All 6 animals in the body armor group and 6 of the 11 animals in the control group survived for 3 hours after injury. Respiratory arrest immediately after exposure to the blast wave was considered to influence the mortality in our pig model. Body armor may have a beneficial effect in protecting against respiratory arrest immediately after an explosion.


Assuntos
Traumatismos por Explosões/prevenção & controle , Explosões , Roupa de Proteção , Animais , Masculino , Modelos Animais , Suínos
3.
Appl Opt ; 44(14): 2818-26, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15943334

RESUMO

Using laser-induced thermal acoustics, we demonstrate nonintrusive and remote sound-speed and temperature measurements in liquid water. Unsteady thermal gradients in the water sample produce fast, random laser beam misalignments, which are the primary source of uncertainty in these measurements. For water temperatures over the range 10 degrees C to 45 degrees C, the precision of a single 300-ns-duration measurement varies from +/-1 to +/-16.5 m/s for sound speed and from +/-0.3 degrees C to +/-9.5 degrees C for temperature. Averaging over 10 s (100 laser pulses) yields accuracies of +/-0.64 m/s and +/-0.45 degrees C for sound speed and temperature, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...