Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5047, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598175

RESUMO

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. However, it is unclear how field-grown plants respond to mild drought. Here, we show through six years of field trials that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in soybean plants in the field. Using Arabidopsis thaliana and its mutant plants grown in pots under controlled environments, we demonstrate that PSR occurs before abscisic acid response under progressive mild drought and that PSR plays a crucial role in plant growth under mild drought. Our observations in the field and laboratory using model crop and experimental plants provide insight into the molecular response to mild drought in field-grown plants and the relationship between nutrition and drought stress response.


Assuntos
Arabidopsis , Inanição , Humanos , Fosfatos , Ácido Abscísico , Secas , Arabidopsis/genética , Laboratórios
2.
Nat Plants ; 9(8): 1236-1251, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563460

RESUMO

Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.


Assuntos
Fagopyrum , Fagopyrum/genética , Domesticação , Melhoramento Vegetal , Mapeamento Cromossômico , Sequência de Bases
3.
Theor Appl Genet ; 136(6): 139, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233781

RESUMO

KEY MESSAGE: We identified a large chromosomal deletion containing TaELF-B3 that confers early flowering in wheat. This allele has been preferred in recent wheat breeding in Japan to adapt to the environment. Heading at the appropriate time in each cultivation region can greatly contribute to stabilizing and maximizing yield. Vrn-1 and Ppd-1 are known as the major genes for vernalization requirement and photoperiod sensitivity in wheat. Genotype combinations of Vrn-1 and Ppd-1 can explain the variation in heading time. However, the genes that can explain the remaining variations in heading time are largely unknown. In this study, we aimed to identify the genes conferring early heading using doubled haploid lines derived from Japanese wheat varieties. Quantitative trait locus (QTL) analysis revealed a significant QTL on the long arm of chromosome 1B in multiple growing seasons. Genome sequencing using Illumina short reads and Pacbio HiFi reads revealed a large deletion of a ~ 500 kb region containing TaELF-B3, an orthologue of Arabidopsis clock gene EARLY FLOWERING 3 (ELF3). Plants with the deleted allele of TaELF-B3 (ΔTaELF-B3 allele) headed earlier only under short-day vernalization conditions. Higher expression levels of clock- and clock-output genes, such as Ppd-1 and TaGI, were observed in plants with the ΔTaELF-B3 allele. These results suggest that the deletion of TaELF-B3 causes early heading. Of the TaELF-3 homoeoalleles conferring early heading, the ΔTaELF-B3 allele showed the greatest effect on the early heading phenotype in Japan. The higher allele frequency of the ΔTaELF-B3 allele in western Japan suggests that the ΔTaELF-B3 allele was preferred during recent breeding to adapt to the environment. TaELF-3 homoeologs will help to expand the cultivated area by fine-tuning the optimal timing of heading in each environment.


Assuntos
Arabidopsis , Triticum , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Genótipo , Fotoperíodo , Arabidopsis/genética , Alelos , Flores/genética
4.
Breed Sci ; 72(3): 257-266, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36408318

RESUMO

Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are widely cultivated temperate crops. In breeding programs with these crops in Japan, effective genomic-assisted selection was performed by selecting core marker sets from thousands of genome-wide amplicon sequencing markers. The core sets consist of 768 and 960 markers for barley and wheat, respectively. These markers are distributed evenly across the genomes and effectively detect widely distributed polymorphisms in the chromosomes. The core set utility was assessed using 1,032 barley and 1,798 wheat accessions across the country. Minor allele frequency and chromosomal distributions showed that the core sets could effectively capture polymorphisms across the entire genome, indicating that the core sets are applicable to highly-related advanced breeding materials. Using the core sets, we also assessed the trait value predictability. As observed via fivefold cross-validation, the prediction accuracies of six barley traits ranged from 0.56-0.74 and 0.62 on average, and the corresponding values for eight wheat traits ranged from 0.44-0.83 and 0.65 on average. These data indicate that the established core marker sets enable breeding processes to be accelerated in a cost-effective manner and provide a strong foundation for further research on genomic selection in crops.

5.
Breed Sci ; 72(5): 343-354, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36776445

RESUMO

The timing of heading is largely affected by environmental conditions. In wheat, Vrn-1 and Ppd-1 have been identified as the major genes involved in vernalization requirement and photoperiod sensitivity, respectively. To compare the effects of Vrn-1 and Ppd-1 alleles on heading time under different environments, we genotyped Vrn-1 and Ppd-1 homoeologues and measured the heading time at Morioka, Tsukuba and Chikugo in Japan for two growing seasons. A total of 128 Japanese and six foreign varieties, classified into four populations based on the 519 genome-wide SNPs, were used for analysis. Varieties with the spring alleles (Vrn-D1a or Vrn-D1b) at the Vrn-D1 locus and insensitive allele (Hapl-I) at the Ppd-D1 locus were found in earlier heading varieties. The effects of Vrn-D1 and Ppd-D1 on heading time were stronger than those of the other Vrn-1 and Ppd-1 homoeologues. Analysis of variance revealed that heading time was significantly affected by the genotype-environment interactions. Some Vrn-1 and Ppd-1 alleles conferred earlier or later heading in specific environments, indicating that the effect of both alleles on the timing of heading depends on the environment. Information on Vrn-1 and Ppd-1 alleles, together with heading time in various environments, provide useful information for wheat breeding.

6.
Mol Breed ; 41(10): 62, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309314

RESUMO

The number of wheat grains is one of the major determinants of yield. Many quantitative trait loci (QTLs) and some causal genes such as GNI-A1 and WAPO-A1 that are associated with grain number per spike (GNS) have been identified, but the underlying mechanisms remain largely unknown. We analyzed QTLs for grain number and other related traits using 188 doubled haploid lines derived from the Japanese high-yield variety, Kitahonami, as a parent to elucidate the genetic mechanism determining grain number. The major QTLs for grain number at the apical, central, and basal parts of the spike were identified in different chromosomal regions. We considered GNI-A1 and WAPO-A1 as candidate genes controlling grain number at the central and basal parts of the spike, respectively. Kitahonami had the favorable 105Y allele of GNI-A1 and WAPO-A1b allele and unfavorable alleles of QTLs for grain number at the apical part of spikes. Pyramiding the favorable alleles of these QTLs significantly increased GNS without significantly reducing thousand-grain weight (TGW). In contrast, the accumulation of favorable alleles of QTLs for TGW significantly decreased GNS, whereas days to heading positively correlated with GNS. Late heading increased the spikelet number per spike, resulting in a higher GNS. Pyramiding of the QTLs for TGW and days to heading also altered the GNS. In conclusion, GNS is a complex trait controlled by many QTLs, and it is essential for breeding to design. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01255-8.

7.
DNA Res ; 27(4)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051662

RESUMO

Cultivation of quinoa (Chenopodium quinoa), an annual pseudocereal crop that originated in the Andes, is spreading globally. Because quinoa is highly nutritious and resistant to multiple abiotic stresses, it is emerging as a valuable crop to provide food and nutrition security worldwide. However, molecular analyses have been hindered by the genetic heterogeneity resulting from partial outcrossing. In this study, we generated 136 inbred quinoa lines as a basis for the molecular identification and characterization of gene functions in quinoa through genotyping and phenotyping. Following genotyping-by-sequencing analysis of the inbred lines, we selected 5,753 single-nucleotide polymorphisms (SNPs) in the quinoa genome. Based on these SNPs, we show that our quinoa inbred lines fall into three genetic sub-populations. Moreover, we measured phenotypes, such as salt tolerance and key growth traits in the inbred quinoa lines and generated a heatmap that provides a succinct overview of the genotype-phenotype relationship between inbred quinoa lines. We also demonstrate that, in contrast to northern highland lines, most lowland and southern highland lines can germinate even under high salinity conditions. These findings provide a basis for the molecular elucidation and genetic improvement of quinoa and improve our understanding of the evolutionary process underlying quinoa domestication.


Assuntos
Chenopodium quinoa/genética , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética , Chenopodium quinoa/fisiologia , Estudo de Associação Genômica Ampla , Fenótipo
8.
Commun Biol ; 3(1): 513, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943738

RESUMO

Halophytes are plants that grow in high-salt environments and form characteristic epidermal bladder cells (EBCs) that are important for saline tolerance. To date, however, little has been revealed about the formation of these structures. To determine the genetic basis for their formation, we applied ethylmethanesulfonate mutagenesis and obtained two mutants with reduced levels of EBCs (rebc) and abnormal chloroplasts. In silico subtraction experiments revealed that the rebc phenotype was caused by mutation of REBC, which encodes a WD40 protein that localizes to the nucleus and chloroplasts. Phylogenetic and transformant analyses revealed that the REBC protein differs from TTG1, a WD40 protein involved in trichome formation. Furthermore, rebc mutants displayed damage to their shoot apices under abiotic stress, suggesting that EBCs may protect the shoot apex from such stress. These findings will help clarify the mechanisms underlying EBC formation and function.


Assuntos
Chenopodium quinoa/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Repetições WD40/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Cloroplastos/genética , Células Epidérmicas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Estresse Fisiológico/genética
9.
Breed Sci ; 70(1): 112-117, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351310

RESUMO

Common buckwheat (Fagopyrum esculentum) is a heterostylous self-incompatible (SI) species with two different flower morphologies, pin and thrum. The SI trait is controlled by a single gene complex locus, S. Self-compatible (SC) lines were developed by crossing F. esculentum and F. homotropicum; these lines have an SC gene, Sh , which is dominant over the s allele and recessive to the S allele. S-ELF3 has been identified as a candidate gene in the S locus and is present in the S and Sh but not s alleles. A single-nucleotide deletion in the S-ELF3 gene of the Sh allele results in a frame shift. To develop co-dominant markers to distinguish between ShSh and Shs plants, we performed a next-generation sequencing analysis in combination with bulked-segregant analysis. We developed four co-dominant markers linked to the S locus. We investigated the polymorphism frequency between a self-compatible line and leading Japanese buckwheat cultivars. Linkage between a developed sequence-tagged-site marker and flower morphology was confirmed using more than 1000 segregating plants and showed no recombination. The developed markers would be useful for buckwheat breeding and also to produce lines for genetic analysis such as recombinant inbred lines.

10.
BMC Plant Biol ; 19(1): 125, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943914

RESUMO

BACKGROUND: Buckwheat (Fagopyrum esculentum Moench.) is an annual crop that originated in southern China. The nutritious seeds are used in cooking much like cereal grains. Buckwheat is an outcrossing species with heteromorphic self-incompatibility due to its dimorphic (i.e., short- and long-styled) flowers and intra-morph infertility. The floral morphology and intra-morph incompatibility are both determined by a single S locus. Plants with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s) at this locus, and the S/S genotype is not found. Recently, we built a draft genome assembly of buckwheat and identified the 5.4-Mb-long S-allele region harbored by short-styled plants. In this study, the first report on the genome-wide diversity of buckwheat, we used a genotyping-by-sequencing (GBS) dataset to evaluate the genome-wide nucleotide diversity within cultivated buckwheat landraces worldwide. We also investigated the utility of the S-allele region for phylogenetic analysis of buckwheat. RESULTS: Buckwheat showed high nucleotide diversity (0.0065), comparable to that of other outcrossing plants, based on a genome-wide simple nucleotide polymorphism (SNP) analysis. Phylogenetic analyses based on genome-wide SNPs showed that cultivated buckwheat comprises two groups, Asian and European, and revealed lower nucleotide diversity in the European group (0.0055) and low differentiation between the Asian and European groups. The nucleotide diversity (0.0039) estimated from SNPs in the S-allele region is lower than that in genome-wide SNPs. Phylogenetic analysis based on this region detected three diverged groups, S-1, S-2, and S-3. CONCLUSION: The SNPs detected using the GBS dataset were effective for elucidating the evolutionary history of buckwheat, and led to the following conclusions: (1) the low nucleotide diversity of the entire genome in the European group and low differentiation between the Asian and European groups suggested genetic bottlenecks associated with dispersion from Asia to Europe, and/or recent intensified cultivation and selection in Europe; and (2) the high diversification in the S-allele region was indicative of gene flows from wild to cultivated buckwheat, suggesting that cultivated buckwheat may have multiple origins.


Assuntos
Fagopyrum/genética , Fluxo Gênico , Alelos , Flores/genética , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética
11.
DNA Res ; 26(2): 171-182, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715317

RESUMO

Dramatic changes occasionally occur in intergenic regions leading to genomic alterations during speciation and will consequently obscure the ancestral species that have contributed to the formation of allopolyploid organisms. The S genome of five species of section Sitopsis of genus Aegilops is considered to be an origin of B-genome in cultivated tetraploid and hexaploid wheat species, although its actual donor is still unclear. Here, we attempted to elucidate phylogenetic relationship among Sitopsis species by performing RNA sequencing of the coding regions of each chromosome. Thus, genome-wide polymorphisms were extensively analyzed in 19 accessions of the Sitopsis species in reference to the tetraploid and hexaploid wheat B genome sequences and consequently were efficiently anchored to the B-genome chromosomes. The results of our genome-wide exon sequencing and resultant phylogenetic analysis indicate that Ae. speltoides is likely to be the direct donor of all chromosomes of the wheat B genome. Our results also indicate that the genome differentiation during wheat allopolyploidization from S to B proceeds at different speeds over the chromosomes rather than at constant rate and recombination could be a factor determining the speed. This observation is potentially generalized to genome differentiation during plant allopolyploid evolution.


Assuntos
Aegilops/genética , Evolução Molecular , Genoma de Planta , Filogenia , Folhas de Planta/genética , Análise de Sequência de RNA , Triticum/genética , Aegilops/classificação , Cromossomos de Plantas , Genômica , Polimorfismo Genético , Sequenciamento do Exoma
12.
Genes Genet Syst ; 94(1): 35-49, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626760

RESUMO

We investigated the genetic diversity of the core collection of hexaploid wheat accessions in the Japanese wheat gene bank, NBRP-Wheat, with a focus on grain morphology. We scanned images of grains in the core collection, which consists of 189 accessions of Triticum aestivum, T. spelta, T. compactum, T. sphaerococcum, T. macha and T. vavilovii. From the scanned images, we recorded six metric characters (area size, perimeter length, grain length, grain width, length to width ratio and circularity) using the software package SmartGrain ver. 1.2. Statistical analyses of the collected data along with hundred-grain weight revealed that T. aestivum has the largest diversity in grain morphology. Principal component analysis of these seven characters demonstrated that two principal components (PCcore1 and PCcore2) explain more than 96% of the variation in the core collection accessions. The correlation coefficients between the principal components and characters indicate that PCcore1 is related to grain size and PCcore2 to grain shape. From a genome-wide association study, we found a total of 15 significant marker-trait associations (MTAs) for grain morphological characters. More interestingly, we found mutually exclusive MTAs for PCcore1 and PCcore2 on 18 and 13 chromosomes, respectively. The results suggest that grain morphology in hexaploid wheat is determined by two factors, grain size and grain shape, which are under the control of multiple genetic loci.


Assuntos
Grão Comestível/genética , Polimorfismo Genético , Poliploidia , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas/genética , Grão Comestível/anatomia & histologia , Análise de Componente Principal , Triticum/crescimento & desenvolvimento
13.
Genes Genet Syst ; 93(1): 25-29, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29343669

RESUMO

The wheat florigen gene Wheat FLOWERING LOCUS T (WFT, which is identical to VRN3) is an integrator of the vernalization, photoperiod and autonomous pathways in wheat flowering. Many studies have indicated that VERNALIZATION 1 (VRN1) directly or indirectly up-regulates WFT expression in leaves. VRN1 encodes an APETALA1/FRUITFULL-like MADS box transcription factor that is up-regulated by vernalization and aging, leading to promotion of flowering. In this study, the VRN1 protein was expressed as a His-Tag fusion protein in Escherichia coli and used in an electrophoretic mobility shift assay (EMSA). The results from the EMSA indicated that the VRN1 protein directly binds to the CArG-box in the promoter region of WFT, suggesting the direct up-regulation of WFT by VRN1 in the leaves of wheat plants.


Assuntos
Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Triticum/metabolismo , Regulação para Cima , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Triticum/genética
14.
J Plant Physiol ; 222: 28-38, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29367015

RESUMO

Using heavy-ion beam mutagenesis of Triticum monococcum strain KU104-1, we identified a mutant that shows extra early-flowering; it was named extra early-flowering 3 (exe3). Here, we carried out expression analyses of clock-related genes, clock downstream genes and photoperiod pathway genes, and found that the clock component gene PHYTOCLOCK 1/LUX ARRHYTHMO (PCL1/LUX) was not expressed in exe3 mutant plants. A PCR analysis of DNA markers indicated that the exe3 mutant had a deletion of wheat PCL1/LUX (WPCL1), and that the WPCL1 deletion was correlated with the mutant phenotype in the segregation line. We confirmed that the original strain KU104-1 carried a mutation that produced a null allele of a flowering repressor gene VERNALIZATION 2 (VRN2). As a result, the exe3 mutant has both WPCL1 and VRN2 loss-of-function mutations. Analysis of plant development in a growth chamber showed that vernalization treatment accelerated flowering time in the exe3 mutant under short day (SD) as well as long day (LD) conditions, and the early-flowering phenotype was correlated with the earlier up-regulation of VRN1. The deletion of WPCL1 affects the SD-specific expression patterns of some clock-related genes, clock downstream genes and photoperiod pathway genes, suggesting that the exe3 mutant causes a disordered SD response. The present study indicates that VRN1 expression is associated with the biological clock and the VRN1 up-regulation is not influenced by the presence or absence of VRN2.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Deleção de Sequência , Triticum/genética , Flores/genética , Mutação , Fotoperíodo , Proteínas de Plantas/metabolismo , Triticum/crescimento & desenvolvimento
15.
PLoS One ; 11(10): e0165618, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788250

RESUMO

Triticum aestivum L. cv 'Chogokuwase' is an extra-early flowering common wheat cultivar that is insensitive to photoperiod conferred by the photoperiod insensitive alleles at the Photoperiod-B1 (Ppd-B1) and Ppd-D1loci, and does not require vernalization for flowering. This reduced vernalization requirement is likely due to the spring habitat allele Vrn-D1 at the VERNALIZATION-D1 locus. Genotypes of the Ppd-1 loci that determine photoperiod sensitivity do not fully explain the insensitivity to photoperiod seen in 'Chogokuwase'. We detected altered expression patterns of clock and clock-output genes including Ppd-1 in 'Chogokuwase' that were similar to those in an einkorn wheat mutant that lacks the clock-gene homologue, wheat PHYTOCLOCK 1 (WPCL1). Presumptive loss-of-function mutations in all WPCL1 homoeologous genes were found in 'Chogokuwase' and 'Geurumil', one of the parental cultivars. Segregation analysis of the two intervarietal F2 populations revealed that all the examined F2 plants that headed as early as 'Chogokuwase' had the loss-of-function wpcl1 alleles at all three homoeoloci. Some F2 plants carrying the wpcl1 alleles at three homoeoloci headed later than 'Chogokuwase', suggesting the presence of other loci influencing heading date. Flowering repressor Vrn-2 was up-regulated in 'Chogokuwase' and 'Geurumil' that had the triple recessive wpcl1 alleles. An elevated transcript abundance of Vrn-2 could explain the observation that 'Geurumil' and some F2 plants carrying the three recessive wpcl1 homeoealleles headed later than 'Chogokuwase'. In spite of the up-regulation of Vrn-2, 'Chogokuwase' may have headed earlier due to unidentified earliness genes. Our observations indicated that loss-of-function mutations in the clock gene wpcl1 are necessary but are not sufficient to explain the extra-early heading of 'Chogokuwase'.


Assuntos
Flores , Genes de Plantas , Mutação , Fatores de Transcrição/genética , Triticum/genética , Sequência de Aminoácidos , Epistasia Genética , Homozigoto , Fotoperíodo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Triticum/fisiologia
16.
DNA Res ; 23(6): 535-546, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27458999

RESUMO

Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution.


Assuntos
Adaptação Fisiológica , Chenopodium quinoa/genética , Genoma de Planta , Tetraploidia , Chenopodium quinoa/química , DNA de Plantas/química , DNA de Plantas/genética , Endogamia , Valor Nutritivo , Melhoramento Vegetal
17.
PLoS One ; 10(3): e0121583, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806790

RESUMO

Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Hibridização Genética , Poaceae/genética , Triticum/genética , Fenótipo , Folhas de Planta/genética , Tetraploidia
18.
Breed Sci ; 64(3): 213-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25320556

RESUMO

Four extra early-flowering mutants, named extra early-flowering1 (exe1), exe2, exe3, and exe4, were identified in Triticum monococcum strain KU104-1 following heavy-ion beam mutagenesis. The four exe mutants fell into two groups, namely Type I (moderately extra early-flowering type; exe1 and exe3) and Type II (extremely extra early-flowering type; exe2 and exe4). Analysis of plant development in a growth chamber showed that the speed of leaf emergence was accelerated in exe mutants at the reproductive stage compared to wild-type (WT) plants. The speed of leaf emergence was faster in Type II than Type I plants. Analysis of VERNALIZATION 1 (VRN1), a flowering promoter gene, showed that it was more highly expressed in seedlings at early developmental stages in Type II mutants than Type I mutants. These findings indicate that the difference in earliness between Type I and Type II mutants is associated with the level of VRN1 expression. The original KU104-1 is an einkorn wheat strain that carries a null allele of the VRN2 gene, a repressor of flowering. Thus, our results indicate that the level of VRN1 expression controls earliness in exe mutants independently of VRN2.

19.
Genes Genet Syst ; 89(5): 203-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25832747

RESUMO

We dissected barley chromosomes 1H and 6H added to common wheat by the gametocidal system and identified structural changes of the chromosomes by fluorescence in situ hybridization and genomic in situ hybridization. We found five aberrations of chromosome 1H, all of which lacked the long arm: one small fragment with the subtelomeric HvT01 sequence, one terminal deletion, and three telocentric chromosomes of the short arm. We established 33 dissection lines carrying single aberrant 6H chromosomes, of which 15 were deletions, 16 were translocations and two were isochromosomes. We conducted PCR analysis of the aberrant barley chromosomes using 75 and 81 EST markers specific to chromosomes 1H and 6H, respectively. This enabled us to construct a cytological map of chromosome 6H and to compare it to the previously reported genetic map and also to the physical map, which were released by the International Barley Genome Sequencing Consortium. The marker orders on the three maps were largely in agreement. The cytological map had better resolution in the proximal region of chromosome 6H than the corresponding genetic map. We discuss some of the discrepancies in marker order between the three maps that might be due to intraspecific polymorphism and gene duplication, as well as to technical problems inherent in the physical mapping process.


Assuntos
Aberrações Cromossômicas , Cromossomos de Plantas/genética , Hordeum/genética , Mapeamento Cromossômico , Hibridização Genética , Hibridização In Situ , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Triticum/genética
20.
Breed Sci ; 63(4): 374-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24399909

RESUMO

Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...