Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112707, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433294

RESUMO

During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing accurate spatial and lineage information are still lacking. Here, we report a single-cell transcriptome atlas of Drosophila gastrulae, divided into 77 transcriptomically distinct clusters. We find that the expression profiles of plasma-membrane-related genes, but not those of transcription-factor genes, represent each germ layer, supporting the nonequivalent contribution of each transcription-factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstruct the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation.


Assuntos
Gástrula , Transcriptoma , Animais , Transcriptoma/genética , Drosophila/genética , Gastrulação/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
2.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543016

RESUMO

The Golgi complex plays an active role in organizing asymmetric microtubule arrays, which are essential for polarized vesicle transport. The coiled-coil protein MTCL1 stabilizes microtubules nucleated from the Golgi membrane. Here, we report an MTCL1 paralog, MTCL2, which preferentially acts on the perinuclear microtubules accumulated around the Golgi. MTCL2 associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the conserved C-terminal domain without promoting microtubule stabilization. Knockdown of MTCL2 significantly impaired microtubule accumulation around the Golgi, as well as the compactness of the Golgi ribbon assembly structure. Given that MTCL2 forms parallel oligomers through homo-interaction of the central coiled-coil motifs, our results indicate that MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. Results of in vitro wound healing assays further suggest that this function of MTCL2 enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Additionally, the results demonstrated the involvement of CLASPs and giantin in mediating the Golgi association of MTCL2.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...