Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(36): 8199-8204, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37672355

RESUMO

The structure of the minimum unit of the radical cationic water clusters, the (H2O)2+ dimer, has attracted much attention because of its importance for the radiation chemistry of water. Previous spectroscopic studies indicated that the dimers have a proton-transferred structure (H3O+·OH), though the alternate metastable hemibonded structure (H2O·OH2)+ was also predicted based on theoretical calculations. Here, we produce (H2O)2+ dimers in superfluid helium nanodroplets and study their infrared spectra in the range of OH stretching vibrations. The observed spectra indicate the coexistence of the two structures in the droplets, supported by density functional theory calculations. This is the first spectroscopic identification of the hemibonded isomer of water radical cation dimers. The observation of the higher-energy isomer reveals efficient kinetic trapping for metastable ionic clusters due to the rapid cooling in helium droplets.

2.
J Phys Chem A ; 127(22): 4848-4855, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37219534

RESUMO

We report rotational Raman spectroscopy of the ethylene dimer and trimer, based on time-resolved Coulomb explosion imaging of rotational wave packets. Rotational wave packets were created in the gas-phase ethylene clusters upon nonresonant ultrashort pulse irradiation. The subsequent rotational dynamics were traced as spatial distribution of monomer ions ejected from the clusters via the Coulomb explosion process induced by a strong probe pulse. The observed images of monomer ions show multiple kinetic energy components. The time-dependence of the angular distribution for each component was analyzed, and the Fourier transformation spectra, which correspond to rotational spectra, were obtained. A lower kinetic energy component was mainly attributed to a signal from the dimer and a higher energy component mainly from the trimer. We have successfully observed rotational wave packets up to a delay time of ∼20 ns and achieved a spectral resolution of 70 MHz after Fourier transformation. Owing to this higher resolution than the previous studies, improved rotational and centrifugal distortion constants were obtained from the spectra. In addition to improving the spectroscopic constants, this study opens the way for rotational spectroscopy of larger molecular clusters than dimers through Coulomb explosion imaging of rotational wave packets. Details of spectral acquisition and analyses of each kinetic energy component are also reported.

3.
J Phys Chem A ; 127(23): 4964-4978, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257002

RESUMO

We report the creation and observation of vibrational wave packets pertinent to torsional motion in a biphenyl derivative in its electronic ground-state manifold. Adiabatically cooled molecular samples of 2-fluorobiphenyl were irradiated by intense nonresonant ultrashort laser pulses to drive impulsive stimulated Raman excitation of torsional motion. Spectral change due to the nonadiabatic vibrational excitation is probed in a state-selective manner using resonance-enhanced two-photon ionization through the S1 ← S0 electronic transition. The coherent nature of the excitation was exemplified by adopting irradiation with a pair of pump pulses: observed signals for excited torsional levels exhibit oscillatory variations against the mutual delay between the pump pulses due to wave-packet interference. By taking the Fourier transform of the time course of the signals, energy intervals among torsional levels with v = 0-3 were determined and utilized to calibrate a density functional theory (DFT)-calculated torsional potential-energy function. Time variation of populations in the excited torsional levels was assessed experimentally by measuring integrated intensities of the corresponding transitions while scanning the delay. Early time enhancement of the population (up to ∼2 ps) and gradual degradation of coherence (within ∼20 ps) appears. To explain the observed distinctive features, we developed a four-dimensional (4D) dynamical calculation in which one-dimensional (1D) quantum-mechanical propagation of the torsional motion was followed by solving the time-dependent Schrödinger equation, whereas three-dimensional (3D) molecular rotation was tracked by classical trajectory calculations. This hybrid approach enabled us to reproduce experimental results at a reasonable computational cost and provided a deeper insight into rotational effects on vibrational wave-packet dynamics.

4.
Phys Chem Chem Phys ; 24(18): 11014-11022, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35470358

RESUMO

We report time-domain rotational spectroscopy of the argon dimer, Ar2, by implementing time-resolved Coulomb explosion imaging of rotational wave packets. The rotational wave packets are created in Ar2 with a linearly polarized, nonresonant, ultrashort laser pulse, and their spatiotemporal evolution is fully characterized by measuring angular distribution of the fragmented Ar+ promptly ejected from Ar22+ generated by the more intense probe pulse. The pump-probe measurements have been carried out up to a delay time of 16 ns. The alignment parameters, derived from the observed images, exhibit periodic oscillation lasting for more than 15 ns. The pure rotational spectrum of Ar2 is obtained by Fourier transformation of the time traces of the alignment parameters. The frequency resolution in the spectrum is about 90 MHz, the highest ever achieved for Ar2. The rotational constant and the centrifugal distortion constant are determined with much improved precision than the previous experimental results: B0 = 1.72713 ± 0.00009 GHz and D0 = 0.0310 ± 0.0005 MHz. The present B0 value does not match within the quoted experimental uncertainty with that from the VUV spectroscopy, so far accepted as an experimental reference to assess theories. The present improved constants would stand as new references to calibrate state-of-the-art theoretical investigations and an indispensable experimental source for the construction of an accurate empirical intermolecular potential.

5.
Phys Chem Chem Phys ; 22(19): 10853-10862, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32373841

RESUMO

High-precision, time-resolved Coulomb explosion imaging of rotational wave packets in nitrogen molecules created with a pair of time-delayed, polarization-skewed femtosecond laser pulses is presented, providing insight into the creation process and dynamics of direction-controlled wave packets. To initiate unidirectional rotation, the interval of the double-pulse was set so that the second, polarization-tilted pulse hit the molecules at the time when molecules were aligned or antialigned along the polarization vector of the first pulse. During the revival period of the rotational wave packet, pulse intervals around both the full and half revival times were used. The observed molecular wave packet movies clearly show the signatures of quantum rotation, such as angular localization (alignment), dispersion, and revival phenomena, during the unidirectional motion. The patterns are quite different depending on the pulse interval even when the angular distribution at the second pulse irradiation is similar. The observed interval-dependence of the dynamics was analyzed on the basis of the real-time images, with the aid of numerical simulations, and the creation process of the packets was discussed. We show that the observed image patterns can be essentially rationalized in terms of rotational period and alignment parameter. Because the double-pulse scheme is the most fundamental in the creation of direction-controlled rotational wave packets, this study will lead to more sophisticated control and characterization of directional molecular motions.

6.
Phys Chem Chem Phys ; 20(5): 3303-3309, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29164200

RESUMO

Here we report the dissociative ionization imaging of electronically excited nitric oxide (NO) molecules to visualize rotational wave functions in the electronic excited state (A 2Σ+). The NO molecules were excited to a single rotational energy eigenstate in the first electronic excited state by a resonant nanosecond ultraviolet pulse. The molecules were then irradiated by a strong, circularly polarized femtosecond imaging pulse. Spatial distribution of the ejected N+ and O+ fragment ions from the dissociative NO2+ was recorded as a direct measure of the molecular axis distribution using a high-resolution slice ion imaging apparatus. The circularly polarized probe pulse realizes the isotropic ionization and thus undistorted shapes of the functions can be visualized. Due to the higher ionization efficiency of the excited molecules relative to the ground state ones, signals from the excited NO were enhanced. We can, therefore, extract shapes of the square of rotational wave functions in the electronic excited state although the unexcited ground state molecules are the majority in an ensemble. The observed images show s-function-like and p-function-like shapes depending on the excitation wavelengths. These shapes well reflect the rotational (angular momentum) character of the prepared states. The present approach directly leads to the evaluation method of the molecular axis alignment in photo-excited ensembles, and it could also lead to a visualization method for excited state molecular dynamics.

7.
J Vis Exp ; (120)2017 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-28190043

RESUMO

We present a method for visualizing laser-induced, ultrafast molecular rotational wave packet dynamics. We have developed a new 2-dimensional Coulomb explosion imaging setup in which a hitherto-impractical camera angle is realized. In our imaging technique, diatomic molecules are irradiated with a circularly polarized strong laser pulse. The ejected atomic ions are accelerated perpendicularly to the laser propagation. The ions lying in the laser polarization plane are selected through the use of a mechanical slit and imaged with a high-throughput, 2-dimensional detector installed parallel to the polarization plane. Because a circularly polarized (isotropic) Coulomb exploding pulse is used, the observed angular distribution of the ejected ions directly corresponds to the squared rotational wave function at the time of the pulse irradiation. To create a real-time movie of molecular rotation, the present imaging technique is combined with a femtosecond pump-probe optical setup in which the pump pulses create unidirectionally rotating molecular ensembles. Due to the high image throughput of our detection system, the pump-probe experimental condition can be easily optimized by monitoring a real-time snapshot. As a result, the quality of the observed movie is sufficiently high for visualizing the detailed wave nature of motion. We also note that the present technique can be implemented in existing standard ion imaging setups, offering a new camera angle or viewpoint for the molecular systems without the need for extensive modification.


Assuntos
Lasers , Simulação de Dinâmica Molecular , Teoria Quântica , Rotação
8.
Sci Adv ; 1(6): e1400185, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26601205

RESUMO

A gas-phase molecular ensemble coherently excited to have an oriented rotational angular momentum has recently emerged as an appropriate microscopic system to illustrate quantum mechanical behavior directly linked to classical rotational motion, which has a definite direction. To realize an intuitive visualization of such a unidirectional molecular rotation, we report high-resolution direct imaging of direction-controlled rotational wave packets in nitrogen molecules. The rotational direction was regulated by a pair of time-delayed, polarization-skewed laser pulses, introducing the dynamic chirality to the system. The subsequent spatiotemporal propagation was tracked by a newly developed Coulomb explosion imaging setup. From the observed molecular movie, time-dependent detailed nodal structures, instantaneous alignment, angular dispersion, and fractional revivals of the wave packet are fully characterized while the ensemble keeps rotating in one direction. The present approach, providing an accurate view on unidirectional rotation in quantum regime, will guide more sophisticated molecular manipulations by utilizing its capability in capturing highly structured spatiotemporal evolution of molecular wave packets.

9.
Phys Chem Chem Phys ; 17(34): 22042-53, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235389

RESUMO

The preferential hydrogen bond (H-bond) structures of protonated methanol clusters, H(+)(MeOH)n, in the size range of n = 4-8, were studied by size-selective infrared (IR) spectroscopy in conjunction with density functional theory calculations. The IR spectra of bare clusters were compared with those with the inert gas tagging by Ar, Ne, and N2, and remarkable changes in the isomer distribution with the tagging were found for clusters with n≥ 5. The temperature dependence of the isomer distribution of the clusters was calculated by the quantum harmonic superposition approach. The observed spectral changes with the tagging were well interpreted by the fall of the cluster temperature with the tagging, which causes the transfer of the isomer distribution from the open and flexible H-bond network types to the closed and rigid ones. Anomalous isomer distribution with the tagging, which has been recently found for protonated water clusters, was also found for H(+)(MeOH)5. The origin of the anomaly was examined by the experiments on its carrier gas dependence.

10.
Phys Chem Chem Phys ; 15(24): 9523-30, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673901

RESUMO

In this work, we report infrared spectra of large neutral and protonated methanol clusters, (MeOH)n and H(+)(MeOH)n, in the CH and OH stretching vibrational region in the size range of n = 10-50. The infrared-ultraviolet double resonance scheme combined with mass spectrometry was employed to achieve moderate size selection of the neutral clusters with the addition of a phenol molecule as a chromophore. Infrared dissociation spectroscopy was performed on the protonated methanol clusters by using a tandem quadrupole mass spectrometer to enable the precise size selection of the clusters. While the neutral clusters showed essentially the same spectra in all the observed size range, the protonated clusters showed remarkable narrowing of the H-bonded OH stretch band with increasing n. In n≥~30, the spectra of the neutral and protonated clusters become almost identical. These spectral features demonstrate that hydrogen bond networks of methanol prefer simple cyclic structures (or "bicyclic" structures in protonated methanol) and branching of the hydrogen bond networks (side-chain formation) is almost negligible. Implications of the spectra of the clusters are also discussed by comparison with spectra of bulk phases.

11.
J Phys Chem A ; 117(5): 929-38, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23330841

RESUMO

We present infrared spectra of nominal water cluster radical cations (H(2)O)(n)(+) (n = 3-8), or to be precise, ion-radical complexes H(+)(H(2)O)(n-1)(OH), with and without an Ar tag. These clusters are closely related to the ionizing radiation-induced processes in water and are a good model to characterize solvation structures of the ion-radical pair. The spectra of Ar-tagged species show narrower bandwidths relative to those of the bare clusters due to the reduced internal energy via an Ar-attachment. The observed spectra are analyzed by comparing with those of the similar system, H(+)(H(2)O)(n), and calculated ones. We find that the observed spectra are attributable to ion-radical-separated motifs in n ≥ 5, as reported in the previous study (Mizuse et al. Chem. Sci.2011, 2, 868-876). Beyond the structural trends found in the previous study, we characterize isomeric structures and determine the number of water molecules between the charged site and the OH radical in each cluster size. In all of the characterized cluster structures (n = 5-8), the most favorable position of OH radical is the next neighbor of the charged site (H(3)O(+) or H(5)O(2)(+)). The positions and cluster structures are governed by the balance among the hydrogen-bonding abilities of the charged site, H(2)O, and OH radical. These findings on the ionized water networks lead to understanding of the detailed processes of ionizing radiation-initiated reactions in liquid water and aqueous solutions.


Assuntos
Argônio/química , Água/química , Radicais Livres/química , Íons/química , Processos Fotoquímicos , Teoria Quântica , Solventes/química , Espectrofotometria Infravermelho
12.
J Phys Chem A ; 117(1): 101-7, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23234510

RESUMO

A number of isomer structures can be formed in hydrogen-bonded clusters, reflecting the essential variety of structural motifs of hydrogen bond networks. Control of isomer distribution of a cluster is important not only in practical use for isomer-specific spectroscopy but also in understanding of isomerization processes of hydrogen bond networks. Protonated methanol clusters have relatively simple networks and they are model systems suitable to investigate isomer distribution changes. In this paper, isomer distribution of H(+)(CH(3)OH)(7) is studied by size-selective infrared spectroscopy in the OH and CH stretching vibrational region and density functional theory calculations. While the clusters produced by a supersonic jet expansion combined with electron ionization were predominantly isomers having open hydrogen bond networks such as a linear chain, the Ar or Ne attachment (so-called rare gas tagging) entirely switches the isomer structures to compactly folded ones, which are composed only of closed multiple rings. The origin of the isomer switching is discussed in terms of thermal effects and specific isomer preference.

13.
J Phys Chem A ; 116(20): 4868-77, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22554104

RESUMO

Infrared spectroscopy of gas-phase hydrated clusters provides us much information on structures and dynamics of water networks. However, interpretation of spectra is often difficult because of high internal energy (vibrational temperature) of clusters and coexistence of many isomers. Here we report an approach to vary these factors by using the inert gas (so-called "messenger")-mediated cooling technique. Protonated water clusters with a messenger (M), H(+)(H(2)O)(4-8)·M (M = Ne, Ar, (H(2))(2)), are formed in a molecular beam and probed with infrared photodissociation spectroscopy in the OH stretch region. Observed spectra are compared with each other and with bare H(+)(H(2)O)(n). They show clear messenger dependence in their bandwidths and relative band intensities, reflecting different internal energy and isomer distribution, respectively. It is shown that the internal energy follows the order H(+)(H(2)O)(n) >> H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·Ne, while the isomer-selectivity, which changes the isomer distribution in the bare system, follows the order H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ne ~ (H(+)(H(2)O)(n)). Although the origin of the isomer-selectivity is unclear, comparison among spectra measured with different messengers is very powerful in spectral analyses and makes it possible to easily assign spectral features of each isomer.

14.
J Phys Chem A ; 115(41): 11156-61, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21657262

RESUMO

Structures of the [C(6)H(6)-(CH(3)OH)(2)](+) cluster cation are investigated with infrared (IR) spectroscopy. While the noncovalent type structure has been confirmed for the n = 1 cluster of [C(6)H(6)-(CH(3)OH)(n)](+), only contradictory interpretations have been given for the spectra of n = 2, in which significant changes have been observed with the Ar tagging. In the present study, we revisit IR spectroscopy of the n = 2 cluster from the viewpoint of the σ-complex structure, which includes a covalent bond formation between the benzene and methanol moieties. The observed spectral range is extended to the lower-frequency region, and the spectrum is measured with and without Ar and N(2) tagging. A strongly hydrogen-bonded OH stretch band, which is characteristic to the σ-complex structure, is newly found with the tagging. The remarkable spectral changes with the tagging are interpreted by the competition between the σ-complex and noncovalent complex structures in the [C(6)H(6)-(CH(3)OH)(2)](+) system. This result shows that the microsolvation only with one methanol molecule can induce the σ-complex structure formation.


Assuntos
Benzeno/química , Metanol/química , Gases/química , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Solubilidade , Espectrofotometria Infravermelho
15.
Phys Chem Chem Phys ; 13(15): 7129-35, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21399794

RESUMO

Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.


Assuntos
Hidrogênio/química , Metano/química , Nitrogênio/química , Gases Nobres/química , Água/química , Argônio/química , Hidróxidos/química , Isomerismo , Criptônio/química , Modelos Moleculares , Conformação Molecular , Neônio/química , Espectrofotometria Infravermelho , Xenônio/química
16.
J Phys Chem A ; 115(5): 620-5, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21182288

RESUMO

We report infrared spectra of phenol-(H(2)O)(n) (∼20 ≤ n ≤ ∼50) in the OH stretching vibrational region. Phenol-(H(2)O)(n) forms essentially the same hydrogen bond (H-bond) network as that of the neat water cluster, (H(2)O)(n+1). The phenyl group enables us to apply the scheme of infrared-ultraviolet double resonance spectroscopy combined with mass spectrometry, achieving the moderate size selectivity (0 ≤ Δn ≤ ∼6). The observed spectra show clear decrease of the free OH stretch band intensity relative to that of the H-bonded OH band with increasing cluster size n. This indicates increase of the relative weight of four-coordinated water sites, which have no free OH. Corresponding to the suppression of the free OH band, the absorption peak of the H-bonded OH stretch band rises at ∼3350 cm(-1). This spectral change is interpreted in terms of a signature of four-coordinated water sites in the clusters.

18.
J Phys Chem A ; 114(42): 11060-9, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20356087

RESUMO

We report infrared (IR) and electronic spectra of benzene-ammonia cluster radical cations [C(6)H(6)(NH(3))(n)](+) (n = 1 and 2) in the gas phase to explore cluster structures and chemical reactivity of the simplest aromatic radical cation with base (nucleophile) molecules. The electronic spectra in the visible region indicate that these cluster cations no longer have the benzene cation chromophore as a result of an intracluster reaction. Analyses of the IR spectra, on the basis quantum chemical calculations and the vibration-internal rotation analysis, reveal that both [C(6)H(6)(NH(3))(1,2)](+) form σ-complex structures, in which the ammonia moiety is covalently bonded to the benzene moiety due to the intracluster nucleophilic addition. For [C(6)H(6)(NH(3))(2)](+), it is also shown that the second ammonia molecule solvates the σ-complex core via a N-H···N hydrogen bond. Such σ-complex structures are generally supposed to be a key intermediate of aromatic substitution reactions. The observed mass spectra and energetics calculations, however, show that [C(6)H(6)(NH(3))(n)](+) systems are inert for aromatic substitutions. The present experimental observations indicate the inherent stability of these σ-complex structures, even though they do not show the aromatic substitution reactivity.


Assuntos
Amônia/química , Benzeno/química , Cátions/química , Radicais Livres/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Teoria Quântica , Análise Espectral
19.
J Phys Chem A ; 113(44): 12134-41, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19785442

RESUMO

To investigate hydrogen bond network structures of tens of water molecules, we report infrared spectra of moderately size (n)-selected phenol-(H2O)n (approximately 10 < or = n < or = approximately 50), which have essentially the same network structures as (H2O)(n+1). The phenyl group in phenol-(H2O)(n) allows us to apply photoionization-based size selection and infrared-ultraviolet double resonance spectroscopy. The spectra show a clear low-frequency shift of the free OH stretching band with increasing n. Detailed analyses with density functional theory calculations indicate that this shift is accounted for by the hydrogen bond network development from highly strained ones in the small (n < approximately 10) clusters to more relaxed ones in the larger clusters, in addition to the cooperativity of hydrogen bonds.


Assuntos
Fenol/química , Teoria Quântica , Espectrofotometria Infravermelho , Água/química , Ligação de Hidrogênio , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...