Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 614: 160-171, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35093673

RESUMO

Novel mesoporous Li2MnO3/g-C3N4 heterostructures were prepared for the first time by utilizing the sol-gel route in the presence of a nonionic surfactant. TEM and XRD measurements showed that Li2MnO3 (5-10 nm) with monoclinic structures was uniformly distributed onto porous g-C3N4 for the construction of Li2MnO3/g-C3N4 heterojunctions. The obtained photocatalysts were assessed for mineralization and removal of trichloroethylene (TCE) in aqueous media under visible light exposure. Complete degradation of TCE over a 3 %Li2MnO3/g-C3N4 heterostructure within 120 min was achieved. The degradation rate over Li2MnO3/g-C3N4 heterostructures was significantly enhanced, and the 3% Li2MnO3/g-C3N4 heterostructure exhibited a large degradation rate of 7.04 µmolL-1 min-1, which was enhanced by 5 and 3.8 fold compared to those of pristine g-C3N4 (1.39 µmolL-1 min-1) and Li2MnO3 (1.85 µmolL-1 min-1), respectively. The photocatalytic efficiency of the Li2MnO3/g-C3N4 heterojunction was outstandingly promoted because integrating Li2MnO3 with g-C3N4 could create close interfaces with well-matched band potentials for easy mobility and low recombination of photoinduced carriers. The coexistence of Li2MnO3/g-C3N4 interfaces led to a synergic effect, which is considered the key factor in photoinduced electron-hole separation. The synthesis procedure that was employed here is a promising process for the preparation of effective g-C3N4-based photocatalyst systems for photocatalysis applications.


Assuntos
Tricloroetileno , Catálise , Elétrons , Luz
2.
ACS Omega ; 6(9): 6438-6447, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718734

RESUMO

Herein, we report a simple incorporation of PtO NPs at diverse percentages (0.2-0.8 wt %) onto a highly crystalline and mesoporous ZnO matrix by the wet-impregnation approach for degradation of tetracycline (TC) upon visible light exposure. These well-dispersed and small-sized PtO NPs provide the mesoporous PtO-ZnO nanocomposites with outstanding photocatalytic performance for complete TC degradation. The optimized 0.6% PtO-ZnO photocatalyst exhibits excellent TC degradation, and its degradation efficiency reached ∼99% within 120 min. The photocatalytic performance of the 0.6% PtO-ZnO nanocomposite is 20 and 10 times higher than that of pristine ZnO and commercial P-25, respectively. The photodegradation rate of TC over the 0.6% PtO-ZnO nanocomposite is 34 and 12.5 times greater than that of pristine ZnO and commercial P-25, respectively. This is because of the large surface area, unique porous structure, synergistic effect, and broad visible light absorption of the PtO-ZnO nanocomposite. Moreover, mesoporous PtO-ZnO nanocomposites showed a high stability and recyclability over five iterations. This work demonstrates the remarkable role of combining PtO and ZnO photocatalysts in providing nanocomposites with significant potential for the preservation of human health through wastewater remediation.

3.
ACS Omega ; 5(51): 33269-33279, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403289

RESUMO

Fabrication of 3D mesoporous Ag2O-ZnO heterojunctions at varying Ag2O contents has been achieved through poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) as the structure-directing agent for the first time. The mesoporous Ag2O-ZnO nanocomposites exhibited a mesoporous structure, which revealed a large pore volume and high surface area. The photocatalytic efficiency over mesoporous Ag2O-ZnO nanocomposites for tetracycline (TC) compared with that over commercial P-25 and pristine ZnO NPs through the visible light exposure was studied. Mesoporous 1.5% Ag2O-ZnO nanocomposites indicated the highest degradation efficiency of 100% of TC during 120 min of the visible light exposure compared with 5% and 10% for pristine ZnO NPs and commercial P-25, respectively. The TC degradation rate took place much rapidly over 1.5% Ag2O-ZnO nanocomposites (0.798 µmol L-1 min-1) as compared to either commercial P-25 (0.097 µmol L-1 min-1) or ZnO NPs (0.035 µmol L-1 min-1). The mesoporous 1.5% Ag2O-ZnO nanocomposite revealed the highest degradation rate among all synthesized samples, and it was 23 and 8 orders of magnitudes greater than those of pristine ZnO NPs and P-25, respectively. The photoluminescence and transient photocurrent intensity behaviors have been discussed to explore photocatalysis mechanisms. It is anticipated that the present work will contribute some suggestions for understanding other heterojunctions with outstanding behaviors.

4.
Chem Rev ; 116(16): 9091-161, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27434758

RESUMO

Although known for over 90 years, only in the past two decades has the chemistry of diboron(4) compounds been extensively explored. Many interesting structural features and reaction patterns have emerged, and more importantly, these compounds now feature prominently in both metal-catalyzed and metal-free methodologies for the formation of B-C bonds and other processes.

5.
Org Biomol Chem ; 12(37): 7318-27, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25116330

RESUMO

The iridium-catalysed C-H borylation is a valuable and attractive method for the preparation of aryl and heteroaryl boronates. However, application of this methodology for the preparation of pyridyl and related azinyl boronates can be challenged by low reactivity and propensity for rapid protodeborylation, particularly for a boronate ester ortho to the azinyl nitrogen. Competition experiments have revealed that the low reactivity is due to inhibition of the active catalyst through coordination of the azinyl nitrogen lone pair at the vacant site on the iridium. This effect can be overcome through the incorporation of a substituent at C-2. Moreover, when this is sufficiently electron-withdrawing protodeborylation is sufficiently slowed to permit isolation and purification of the C-6 boronate ester. Following functionalization, reduction of the directing C-2 substituent provides the product arising from formal ortho borylation of an unhindered pyridine ring.


Assuntos
Compostos de Boro/síntese química , Irídio/química , Compostos Organometálicos/química , Piridinas/química , Compostos de Boro/química , Catálise , Estrutura Molecular
6.
Chemistry ; 18(16): 5022-35, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22415854

RESUMO

An efficient synthetic route to 2- and 2,7-substituted pyrenes is described. The regiospecific direct C-H borylation of pyrene with an iridium-based catalyst, prepared in situ by the reaction of [{Ir(µ-OMe)cod}(2)] (cod = 1,5-cyclooctadiene) with 4,4'-di-tert-butyl-2,2'-bipyridine, gives 2,7-bis(Bpin)pyrene (1) and 2-(Bpin)pyrene (2, pin = OCMe(2)CMe(2)O). From 1, by simple derivatization strategies, we synthesized 2,7-bis(R)-pyrenes with R = BF(3)K (3), Br (4), OH (5), B(OH)(2) (6), and OTf (7). Using these nominally nucleophilic and electrophilic derivatives as coupling partners in Suzuki-Miyaura, Sonogashira, and Buchwald-Hartwig cross-coupling reactions, we obtained 2,7-bis(R)-pyrenes with R = (4-CO(2)C(8)H(17))C(6)H(4) (8), Ph (9), C≡CPh (10), C≡C[{4-B(Mes)(2)}C(6)H(4)] (11), C≡CTMS (12), C≡C[(4-NMe(2))C(6)H(4)] (14), C≡CH (15), N(Ph)[(4-OMe)C(6)H(4)] (16), and R = OTf, R' = C≡CTMS (13). Lithiation of 4, followed by reaction with CO(2), yielded pyrene-2,7-dicarboxylic acid (17), whilst borylation of 2-tBu-pyrene gave 2-tBu-7-Bpin-pyrene (18) selectively. By similar routes (including Negishi cross-coupling reactions), monosubstituted 2-R-pyrenes with R = BF(3)K (19), Br (20), OH (21), B(OH)(2) (22), [4-B(Mes)(2)]C(6)H(4) (23), B(Mes)(2) (24), OTf (25), C≡CPh (26), C≡CTMS (27), (4-CO(2)Me)C(6)H(4) (28), C≡CH (29), C(3)H(6)CO(2)Me (30), OC(3)H(6)CO(2)Me (31), C(3)H(6)CO(2)H (32), OC(3)H(6)CO(2)H (33), and O(CH(2))(12)Br (34) were obtained from 2. These derivatives are of synthetic and photophysical interest because they contain donor, acceptor, and conjugated substituents. The crystal structures of compounds 4, 5, 7, 12, 18, 19, 21, 23, 26, and 28-31 have also been obtained from single-crystal X-ray diffraction data, revealing a diversity of packing modes, which are described in the Supporting Information. A detailed discussion of the structures of 1 and 2, their polymorphs, solvates, and co-crystals is reported separately.

8.
Dalton Trans ; (8): 1055-64, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18274686

RESUMO

We present herein a high yield, highly selective catalytic synthesis of vinylboronate esters (VBEs), including 1,1-disubstituted VBEs, from alkenes without significant hydrogenation or hydroboration, using the simple catalyst precursor, trans-[RhCl(CO)(PPh3)2] (1), and the diboron reagents B2pin2 (2a, pin = pinacolato = OCMe2CMe2O) or B2neop2 (2b, neop = neopentylglycolato = OCH2CMe2CH2O), or the monoboron reagent HBpin, all of which are commercially available. The reactions were conducted at 80 degrees C using conventional heating, or in a microwave reactor at 150 degrees C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...