Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 162: 88-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279620

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by a progressive decline in a variety of cognitive and non-cognitive functions. The amyloid beta protein cascade hypothesis places the formation of amyloid beta protein aggregates on the first position in the complex pathological cascade leading to neurodegeneration, and therefore AD might be considered to be a protein-misfolding disease. The Ubiquitin Proteasome System (UPS), being the primary protein degradation mechanism with a fundamental role in the maintenance of proteostasis, has been identified as a putative therapeutic target to delay and/or to decelerate the progression of neurodegenerative disorders that are characterized by accumulated/aggregated proteins. The purpose of this study was to test if the activation of proteasome in vivo can alleviate AD pathology. Specifically by using two compounds with complementary modes of proteasome activation and documented antioxidant and redox regulating properties in the 5xFAD transgenic mice model of AD, we ameliorated a number of AD related deficits. Shortly after proteasome activation we detected significantly reduced amyloid-beta load correlated with improved motor functions, reduced anxiety and frailty level. Essentially, to our knowledge this is the first report to demonstrate a dual activation of the proteasome and its downstream effects. In conclusion, these findings open up new directions for future therapeutic potential of proteasome-mediated proteolysis enhancement.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fenótipo , Complexo de Endopeptidases do Proteassoma
2.
Neuroreport ; 25(6): 398-403, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24346258

RESUMO

The objective of this study was to examine the effects of aging and long-term dietary restriction (DR) on the level of amyloid precursor protein (APP) and presenilin-1 (PS-1), proteins that are critically involved in Alzheimer's disease. Changes in mRNA and protein expression were assessed by real-time PCR and western blot analysis during aging and long-term DR in the cortex and hippocampus of 6-, 12-, 18-, and 24-month-old rats. Prominent regional changes in expression were observed in response to aging and DR. Although the hippocampus displayed significant alterations in APP mRNA and protein expression and no significant changes in PS-1 expression, an opposite pattern was observed in the cortex. DR counteracted the age-related changes in APP mRNA expression in both structures of old animals. The observed DR-induced increase in mRNA levels in the hippocampus was accompanied by an increase in the level of full-length protein APP. These results indicate that although both structures are very sensitive to aging, a specific spatial pattern of changes in APP and PS-1 occurs during aging. Furthermore, these findings provide evidence that DR can affect APP and PS-1 expression in a manner consistent with its proposed 'antiaging' effect.


Assuntos
Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Restrição Calórica , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Presenilina-1/biossíntese , RNA Mensageiro/biossíntese , Animais , Córtex Cerebral/patologia , Hipocampo/patologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...