Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(7): e0036222, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638829

RESUMO

We report metagenomic sequencing analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in composite wastewater influent from 10 regions in Ontario, Canada, during the transition between Delta and Omicron variants of concern. The Delta and Omicron BA.1/BA.1.1 and BA.2-defining mutations occurring in various frequencies were reported in the consensus and subconsensus sequences of the composite samples.

2.
PLoS One ; 15(5): e0223698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401793

RESUMO

Limb length, cursoriality and speed have long been areas of significant interest in theropod paleobiology, since locomotory capacity, especially running ability, is critical in the pursuit of prey and to avoid becoming prey. The impact of allometry on running ability, and the limiting effect of large body size, are aspects that are traditionally overlooked. Since several different non-avian theropod lineages have each independently evolved body sizes greater than any known terrestrial carnivorous mammal, ~1000kg or more, the effect that such large mass has on movement ability and energetics is an area with significant implications for Mesozoic paleoecology. Here, using expansive datasets that incorporate several different metrics to estimate body size, limb length and running speed, we calculate the effects of allometry on running ability. We test traditional metrics used to evaluate cursoriality in non-avian theropods such as distal limb length, relative hindlimb length, and compare the energetic cost savings of relative hindlimb elongation between members of the Tyrannosauridae and more basal megacarnivores such as Allosauroidea or Ceratosauridae. We find that once the limiting effects of body size increase is incorporated there is no significant correlation to top speed between any of the commonly used metrics, including the newly suggested distal limb index (Tibia + Metatarsus/ Femur length). The data also shows a significant split between large and small bodied theropods in terms of maximizing running potential suggesting two distinct strategies for promoting limb elongation based on the organisms' size. For small and medium sized theropods increased leg length seems to correlate with a desire to increase top speed while amongst larger taxa it corresponds more closely to energetic efficiency and reducing foraging costs. We also find, using 3D volumetric mass estimates, that the Tyrannosauridae show significant cost of transport savings compared to more basal clades, indicating reduced energy expenditures during foraging and likely reduced need for hunting forays. This suggests that amongst theropods, hindlimb evolution was not dictated by one particular strategy. Amongst smaller bodied taxa the competing pressures of being both a predator and a prey item dominant while larger ones, freed from predation pressure, seek to maximize foraging ability. We also discuss the implications both for interactions amongst specific clades and Mesozoic paleobiology and paleoecological reconstructions as a whole.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/fisiologia , Animais , Tamanho Corporal , Conjuntos de Dados como Assunto , Comportamento Alimentar , Paleontologia , Comportamento Predatório , Corrida
3.
Nat Commun ; 9(1): 3088, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082788

RESUMO

Prior to atmospheric oxygenation, ecosystems were exposed to higher UV radiation fluxes relative to modern surface environments. Iron-silica mineral coatings have been evoked as effective UV radiation shields in early terrestrial settings. Here we test whether similar protection applied to planktonic cyanobacteria within the Archean water column. Based on experiments done under Archean seawater conditions, we report that Fe(III)-Si-rich precipitates absorb up to 70% of incoming UV-C radiation, with a reduction of <20% in photosynthetically active radiation flux. However, we demonstrate that even short periods of UV-C irradiation in the presence of Fe(III)-Si precipitates resulted in high mortality rates, and suggest that these effects would have persisted throughout much of the photic zone. Our findings imply that despite the shielding properties of Fe(III)-Si-rich precipitates in the early water column, UV radiation would continue to limit cyanobacterial expansion and likely had a greater effect on Archean ecosystem structure before the formation of an ozone layer.


Assuntos
Cianobactérias/efeitos da radiação , Ecossistema , Compostos Férricos/metabolismo , Fotossíntese , Plâncton/efeitos da radiação , Água do Mar/microbiologia , Raios Ultravioleta , Cianobactérias/metabolismo , Microscopia Eletrônica de Transmissão , Oxigênio/metabolismo , Ozônio , Plâncton/metabolismo , Silício
4.
J Vis Exp ; (136)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939174

RESUMO

The mechanisms underpinning the deposition of fine-grained, organic-rich sediments are still largely debated. Specifically, the impact of the interaction of clay particles with reactive, planktonic cyanobacterial cells to the sedimentary record is under studied. This interaction is a potentially major contributor to shale depositional models. Within a lab setting, the flocculation and sedimentation rates of these materials can be examined and measured in a controlled environment. Here, we detail a protocol for measuring the sedimentation rate of cyanobacterial/clay mixtures. This methodology is demonstrated through the description of two sample experiments: the first uses kaolin (a dehydrated form of kaolinite) and Synechococcus sp. PCC 7002 (a marine coccoid cyanobacteria), and the second uses kaolin and Synechocystis sp. PCC 6803 (a freshwater coccoid cyanobacteria). Cyanobacterial cultures are mixed with varying amounts of clay within a specially designed tank apparatus optimized to allow continuous, real-time video and photographic recording. The sampling procedures are detailed as well as a post-collection protocol for precise measurement of chlorophyll a from which the concentration of cyanobacterial cells remaining in suspension can be determined. Through experimental replication, a profile is constructed that displays sedimentation rate.


Assuntos
Silicatos de Alumínio/metabolismo , Cianobactérias/patogenicidade , Silicatos de Alumínio/análise , Argila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...