Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062690

RESUMO

Ascorbate peroxidase (APX) is a crucial enzyme involved in cellular antioxidant defense and plays a pivotal role in modulating reactive oxygen species (ROS) levels under various environmental stresses in plants. This study utilized bioinformatics methods to identify and analyze the APX gene family of pomelo, while quantitative real-time PCR (qRT-PCR) was employed to validate and analyze the expression of CmAPXs at different stages of fruit postharvest. This study identified 96 members of the CmAPX family in the entire pomelo genome, with uneven distribution across nine chromosomes and occurrences of gene fragment replication. The subcellular localization includes peroxisome, cytoplasm, chloroplasts, and mitochondria. The CmAPX family exhibits a similar gene structure, predominantly consisting of two exons. An analysis of the upstream promoter regions revealed a significant presence of cis-acting elements associated with light (Box 4, G-Box), hormones (ABRE, TCA-element), and stress-related (MBS, LTR, ARE) responses. Phylogenetic and collinearity analyses revealed that the CmAPX gene family can be classified into three subclasses, with seven collinear gene pairs. Furthermore, CmAPXs are closely related to citrus, pomelo, and lemon, followed by Arabidopsis, and exhibit low homology with rice. Additionally, the transcriptomic heat map and qPCR results revealed that the expression levels of CmAPX57, CmAPX34, CmAPX50, CmAPX4, CmAPX5, and CmAPX81 were positively correlated with granulation degree, indicating the activation of the endogenous stress resistance system in pomelo cells by these genes, thereby conferring resistance to ROS. This finding is consistent with the results of GO enrichment analysis. Furthermore, 38 miRNAs were identified as potential regulators targeting the CmAPX family for post-transcriptional regulation. Thus, this study has preliminarily characterized members of the APX gene family in pomelo and provided valuable insights for further research on their antioxidant function and molecular mechanism.


Assuntos
Ascorbato Peroxidases , Citrus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Citrus/genética , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica/métodos
2.
Plant Physiol Biochem ; 192: 207-217, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265205

RESUMO

Drought stress will lead to a decrease in tomato yield and poor flavour, yield and quality, resulting in economic losses in agricultural production. Mining the key genes regulating tomato drought resistance is of great significance to improve the drought resistance of tomato plants. The cell wall can directly participate in the plant drought stress response as one of the main components of the cell wall, and the regulation of pectin content in plant drought resistance is still unclear. Here, the candidate gene Solyc08g006690 (Slpmei27) was obtained by fine mapping based on genome sequencing technology (BSA-seq) of late-maturing stress-resistant tomato mutants found in the field. Slpmei27 is expressed in the cell wall. The transient silencing of Slpmei27 by VIGS significantly improved the drought resistance of tomato. Meanwhile, Slpmei27 silencing could significantly change the cell wall structure of plants, change the stomatal pass rate, reduce the water loss rate of plants, improve the scavenging ability of reactive oxygen species, change the redox balance in plants, and thus improve the drought resistance of tomato. The promoter region of this gene contains a large number of hormone-response and stress-response binding sites. The promoter region of the Slpmei27 gene in the mutant could lower the expression of downstream genes. Through this study, the mechanism by which Slpmei27 improves tomato drought resistance was revealed, and the relationship between pectin methyl ester metabolism and plant drought resistance was established, providing a theoretical basis for the production of high-quality tomato materials with high drought resistance.

3.
Plant Sci ; 324: 111457, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089196

RESUMO

Photosynthesis, as an important biological process of plants, produces organic substances for plant growth and development. Although the molecular mechanisms of photosynthesis had been well investigated, the relationship between chlorophyll synthesis and photosynthesis remains largely unknown. The leaf-color mutant was an ideal material for studying photosynthesis and chlorophyll synthesis, which had been seldom investigated in tomato. Here, we obtained a yellow leaf tomato mutant ym (The mutant plants from the line of zs4) in field. Transmission electron microscopy (TEM) and photosynthetic parameters results demonstrated that chloroplast's structure was obviously destroyed and photosynthetic capacity gets weak. The mutant was hybridized with the control to construct the F2 segregation population for sequencing. Slym1 gene, controlling yellow mutant trait, was identified using Bulked Segregation Analysis. Slym1 was up-regulated in the mutant and Slym1 was located in the nucleus. The genes associated with photosynthesis and chlorophyll synthesis were down-regulated in Slym1-OE transgenic tomato plants. The results suggested that Slym1 negatively regulate photosynthesis. Photosynthetic pigment synthesis related genes HEMA, HEMB1, CHLG and CAO were up-regulated in Slym1 silencing plants. The redundant Slym1 binding the intermediate proteins MP resulting in hindering the interaction between MP and HY5 due to the Slym1 with a high expression level in ym mutant, lead to lots of the HY5 with unbound state accumulates in cells, that could accelerate the decomposition of chlorophyll. Therefore, the yellow leaf-color mutant ym could be used as an ideal material for further exploring the relationship between leaf color mutant and photosynthesis and the specific mechanism.


Assuntos
Clorofila , Solanum lycopersicum , Clorofila/metabolismo , Estiolamento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
4.
Genes (Basel) ; 12(3)2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799396

RESUMO

F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant's response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes' promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Solanum lycopersicum , Cromossomos de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...