Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exploration (Beijing) ; 4(1): 20230056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854491

RESUMO

Revealing and clarifying the chemical reaction processes and mechanisms inside the batteries will bring a great help to the controllable preparation and performance modulation of batteries. Advanced characterization techniques based on synchrotron radiation (SR) have accelerated the development of various batteries over the past decade. In situ SR techniques have been widely used in the study of electrochemical reactions and mechanisms due to their excellent characteristics. Herein, the three most wide and important synchrotron radiation techniques used in battery research were systematically reviewed, namely X-ray absorption fine structure (XAFS) spectroscopy, small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Special attention is paid to how these characterization techniques are used to understand the reaction mechanism of batteries and improve the practical characteristics of batteries. Moreover, the in situ combining techniques advance the acquisition of single scale structure information to the simultaneous characterization of multiscale structures, which will bring a new perspective to the research of batteries. Finally, the challenges and future opportunities of SR techniques for battery research are featured based on their current development.

2.
Acta Crystallogr C Struct Chem ; 80(Pt 2): 49-55, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318692

RESUMO

We prepared a 3d-4f heterobimetallic CuEu-organic framework NBU-8 with a density of 1921 kg m-3 belonging to the family of dense packing materials (dense metal-organic frameworks or MOFs). This MOF material was prepared from 4-(pyrimidin-5-yl)benzoic acid (HPBA) with a bifunctional ligand site as a tripodal ligand and Cu2+ and Eu3+ as the metal centres; the molecular formula is Cu3Eu2(PBA)6(NO3)6·H2O. This material is a very promising dimethylformamide (DMF) molecular chemical sensor. Systematic high-pressure studies of NBU-8 were carried out by powder X-ray diffraction, high-pressure X-ray diffraction and molecular dynamics simulation. The high-pressure experiment shows that the (006) diffraction peak of the crystal structure moves toward a low angle with increasing pressure, accompanied by the phenomenon that the d-spacing increases, and as the pressure increases, the (10-2) diffraction peak moves to a higher angle, the amplitude of the d-spacing is significantly reduced and finally merges with the (006) diffraction peak into one peak. The amplitude of the d-spacing is significantly reduced, indicating that NBU-8 compresses and deforms along the a-axis direction when subjected to uniform pressure. This is caused by tilting of the ligands to become more vertical along the c direction, leading to its expansion. This allows greater contraction along the a direction. We also carried out a Rietveld structure refinement and a Birch-Murnaghan solid-state equation fitting for the high-pressure experimental results. We calculated the bulk modulus of the material to be 45.68 GPa, which is consistent with the calculated results. The framework is among the most rigid MOFs reported to date, exceeding that of Cu-BTC. Molecular dynamics simulations estimated that the mechanical energy absorbed by the system when pressurized to 5.128 GPa was 249.261 kcal mol-1. The present work will provide fresh ideas for the study of mechanical energy in other materials.

3.
Nat Commun ; 14(1): 8407, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110399

RESUMO

Studying complex relaxation behaviors is of critical importance for understanding the nature of glasses. Here we report a Kovacs-like memory effect in glasses, manifested by non-monotonic stress relaxation during two-step high-to-low strains stimulations. During the stress relaxation process, if the strain jumps from a higher state to a lower state, the stress does not continue to decrease, but increases first and then decreases. The memory effect becomes stronger when the atomic motions become highly collective with a large activation energy, e.g. the strain in the first stage is larger, the temperature is higher, and the stimulation is longer. The physical origin of the stress memory effect is studied based on the relaxation kinetics and the in-situ synchrotron X-ray experiments. The stress memory effect is probably a universal phenomenon in different types of glasses.

4.
Inorg Chem ; 62(10): 4385-4391, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857465

RESUMO

In recent years, the synthesis, crystalline structure, and applications of zeolite imidazole frameworks (ZIFs) have attracted extensive attention. Since the ZIF-L phase was synthesized, a new phase was observed during the heating process, but its crystal structure is unknown. The unknown new phase, which was named ZIF-L300 in this study, was confirmed again. In this study, the X-ray powder diffraction technique and Rietveld refinement were used to solve the crystalline structure of the unknown ZIF-L300 phase. The results demonstrate that ZIF-L300 has the same chemical formula (ZnC8N4H10) as in ZIF-8 and belongs to a hexagonal structure with a space group of P61. The lattice parameters have been determined as follows: a = b = 8.708(7) Å, c = 24.195(19) Å, α = ß = 90°, and γ = 120°. The X-ray absorption fine structure (XAFS) technique was also used to extract the local atomic structures. The in situ X-ray diffraction (XRD) technique was used to monitor the structural evolution of the as-prepared ZIF-L in a temperature range from room temperature to 600 °C. The results show that the sample experiences a change process from the initial ZIF-L orthorhombic phase (<210 °C), to the ZIF-L300 hexagonal phase (∼300 °C), then to an amorphous phase (∼390 °C), and finally to a zincite ZnO phase (>420 °C). These sorts of structural information are helpful to the application of ZIF materials and enrich the knowledge of the thermal stability of ZIF materials.

5.
Sci Adv ; 8(45): eadd1559, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367933

RESUMO

Hierarchical assemblies of functional nanoparticles can have applications exceeding those of individual constituents. Arranging components in a certain order, even at the atomic scale, can result in emergent effects. We demonstrate that printed atomic ordering is achieved in multiscale hierarchical structures, including nanoparticles, superlattices, and macroarrays. The CsPbBr3 perovskite nanocubes self-assemble into superlattices in ordered arrays controlled across 10 scales. These structures behave as single nanoparticles, with diffraction patterns similar to those of single crystals. The assemblies repeat as two-dimensional planar unit cells, forming crystalline superlattice arrays. The fluorescence intensity of these arrays is 5.2 times higher than those of random aggregate arrays. The multiscale coherent states can be printed on a meter-scale panel as a micropixel light-producing layer of primary-color photon emitters. These hierarchical assemblies can boost the performance of optoelectronic devices and enable the development of high-efficiency, directional quantum light sources.

6.
J Am Chem Soc ; 144(32): 14769-14777, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35924845

RESUMO

Non-copper electrocatalysts are seldom reported to generate C2+ products, and the efficiency over these catalysts is low. In this work, we report a nitrogen-doped γ-Fe2O3 (xFe2O3-N@CN) electrocatalyst, which yield C2H6 as the major product in an H-cell. At -2.0 V vs Ag/Ag+, the Faradaic efficiency (FE) for ethane reaches 42% with a current density of 32 mA cm-2. This is the first report about selective CO2 reduction to ethane (C2H6) over an iron-based catalyst. The results showed that the catalyst possessing FeO1.5-nNn sites enriched with oxygen vacancies was beneficial for the stabilization of *COOH intermediates. The exposure of two adjacent surfaces of Fe atoms was conducive to lowering the energy barrier for C-C coupling over FeO1.5-nNn sites, facilitating the generation of C2H6. This work provides a strategy for the design of a novel iron-based catalyst with tunable local coordination and electronic structures for converting CO2 into C2 products in the CO2RR.

7.
J Synchrotron Radiat ; 29(Pt 2): 424-430, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254305

RESUMO

The microminiaturization of detectors used to record the intensity of X-ray beams is very favorable for combined X-ray experimental techniques. In this paper, chemical-vapor-deposited (CVD) polycrystalline diamond film was used to fabricate a micro-detector owing to its well controlled size, good thermostability, and appropriate conductivity. The preparation process and the main components of the CVD diamond micro-detector are described. The external dimensions of the packaged CVD diamond micro-detector are 15 mm × 7.8 mm × 5.8 mm. To demonstrate the performance of the detector, K-edge X-ray absorption fine-structure (XAFS) spectra of Cr, Fe, Cu, and Se foils were collected using the CVD diamond micro-detector and routine ion chamber. These XAFS measurements were performed at beamline 1W2B of Beijing Synchrotron Radiation Facility, covering an energy range from 5.5 to 13.5 keV. By comparison, it can be seen that the CVD diamond micro-detector shows a more excellent performance than the routine ion-chamber in recording these XAFS spectra. The successful application of the CVD diamond micro-detector in XAFS measurements shows its feasibility in recording X-ray intensity.

8.
Inorg Chem ; 61(5): 2669-2678, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35073051

RESUMO

The formation mechanism of nanoparticles is of great significance for the controllable synthesis, structural design, and performance optimization of nanomaterials. In this paper, an economical hydrothermal method was used to synthesize zinc oxide (ZnO) nanorods. X-ray diffraction, X-ray absorption fine structure, and small-angle X-ray scattering techniques were used to probe the structural changes. Scanning electron microscopy and high-resolution transmission electron microscopy were used to observe the morphologies of the products. A self-designed in situ temperature-pressure sample cell was used to control the hydrothermal conditions. The results demonstrate that an unknown intermediate phase, Zn(HCO3)2·H2O, was first formed at 50 °C, having a morphology of nanoflakes with a average thickness of about 35 nm. The intermediate phase Zn(HCO3)2·H2O was determined to have a monoclinic structure with space group P1211 and the following lattice parameters: a = 11.567 Å, b = 3.410 Å, c = 5.358 Å, ß = 96.0011°, and Z = 2. After a hydrothermal temperature of 140 °C, CO2 and H2O were evaporated from the Zn(HCO3)2·H2O intermediate product and the ZnO nanorods with a wurtzite structure were formed. The final ZnO nanorods have an average diameter of about 45 nm and an average length of about 2 µm. The axial direction of the ZnO nanorods is the [001] crystallographic direction. By virtue of understanding the formation mechanism, this work is helpful for the controllable synthesis of ZnO nanoparticles.

9.
Mater Horiz ; 8(10): 2823-2833, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34486636

RESUMO

Whilst applying a coating layer to a polymer film is a routine approach to enhance the gas barrier properties of the film, it is counter-intuitive to consider that the gas barrier performance of the film would improve by ageing the coating dispersion for weeks before application. Herein, we report that the oxygen barrier performance of a 12 µm PET film coated with a dispersion of inorganic nanosheets in polyvinyl alcohol can be significantly enhanced by ageing this coating dispersion for up to 8 weeks before application. We found up to a 37-fold decrease in the oxygen transmission rate (OTR) of the PET coated film using aged dispersions of [Mg0.66Al0.33(OH)2](NO3)0.33 layered double hydroxide nanosheets (Mg2Al-LDH NS) in polyvinyl alcohol (PVA) compared to the film coated with an equivalent freshly prepared LDH/PVA dispersion. A limiting OTR value of 0.31 cc m-2 day-1 was achieved using the PET film coated with a 3 week aged LDH NS/PVA dispersion. X-ray diffraction experiments show that the degree of in plane alignment of LDH NS on the PET film surface increased significantly from 70.6 ± 0.6 to 86.7 ± 0.6 (%) (100% represents complete alignment of LDH NS platelets on the film surface) for the 4 week aged dispersion compared to the freshly prepared layer. We postulate that when the Mg2Al-LDH NS are aged in PVA the coiled PVA aggregates start to unwrap and attach onto the Mg2Al-LDH NS through hydrogen bonding and eventually form a hydrogen bonded ordered network that facilitates the alignment of nanosheet dispersions during the coating process. Our results suggest that the ageing of inorganic nanosheet dispersions in PVA or other potential hydrogen bonding adhesive systems could be a general approach to improve the alignment of the nanosheets on the polymer film surface once applied and thus improve their performance characteristics for barrier coating applications.

10.
Phys Chem Chem Phys ; 23(33): 17888-17893, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34378570

RESUMO

Ionic liquids (ILs) are potential green solvents with very broad application prospects. Their toxicity and other biological effects are largely related to their hydrophobic properties. In this work, the effects of two imidazolium-based ILs with either a butyl or a hexyl chain, [C4mim][OAc] or [C6mim][OAc], on the phase behaviours of a representative phospholipid, dipalmitoylphosphatidylcholine (DPPC), were examined using synchrotron small- and wide-angle X-ray scattering and differential scanning calorimetry techniques. A series of samples with a lipid : IL molar ratio ranging from 1 : 0 to 1 : 4/1 : 5 were prepared as aqueous dispersions in the form of multi-lamellar vesicles. The two ILs were found to have distinct effects on the phase behaviours of DPPC. For [C4mim][OAc], its effect is very limited. In contrast, for [C6mim][OAc], it could eliminate the pre-transition of DPPC, markedly affect the main phase transition of the lipid, and insert into the DPPC bilayer at gel state to form an interdigitated gel phase. The findings increased our understanding on the biological effects of imidazolium-based ILs and might shed light on the design of novel IL-based antimicrobials.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Imidazóis/química , Líquidos Iônicos/química , Estrutura Molecular , Transição de Fase
11.
RSC Adv ; 11(59): 37528-37539, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496414

RESUMO

Developing an efficient catalyst is desirable when for example moving from a noble metal-based catalyst to a transition metal-based one for VOC removal. In this work, the chloropropyl-modified NaY zeolite (NaY-CPT) was first synthesized in an extremely dense system through introducing 3-chloropropyl-trimethoxysilane (CPT) in the aluminosilicate sol. Then the Cu/Y-CPT catalyst was fabricated by impregnating Cu species on the NaY-CPT zeolite and the highly effective Cu/Y based catalyst has been achieved for catalytic toluene oxidation. The structure evolution of CPT modified sol and its effect on texture properties of NaY-CPT and thereby reduction ability of Cu/Y catalyst were systematically investigated by synchrotron radiation small angle X-ray scattering (SR-SAXS), EXAFS and other characterization. The CPT modified sol can promote the formation of more active aluminosilicate species, greatly accelerating crystal growth and improving framework Si/Al ratio of NaY zeolite. Due to the presence of the CPT group, the Cu/Y-CPT catalyst enhanced the interaction between Cu species and the zeolite matrix, resulting in small sized CuO nanoparticles (2.0-4.0 nm) anchoring to NaY-CPT. The Cu/Y-CPT catalyst renders more isolated Cu2+ species and adsorbed oxygen species, which are reactive in the oxidation reaction due to their high reducibility and mobility. Finally, the Cu/Y-CPT catalyst exhibits 90% toluene conversion at 296 °C (T 90), lower than the value of 375 °C on the conventional Cu/Y-con catalyst. Meanwhile, the optimal Cu/Y-CPT catalyst also gives higher toluene conversion and stability in moisture conditions.

12.
Can J Aging ; 40(2): 331-343, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515318

RESUMO

This study explored family caregivers' use of technology to care for people with dementia living at home. Three questions were pursued: (1) what are the important, unmet needs of family caregivers, (2) how do they use technologies to assist in care tasks, and (3) what do health care providers know about caregivers' needs and technology use? Two comprehensive surveys were developed to answer these questions: one for family caregivers (n = 33), and one for health care providers (n = 60). Descriptive and quantitative analyses showed that caregivers' important, unmet needs were in the domains of information, formal services, and emotional support. Caregivers make limited use of technology but believe in its potential usefulness. Health care providers agree that technology is useful in dementia care; however, they underestimate caregivers' willingness to adopt technologies to communicate with providers. Findings prove caregiver willingness to use technology to support their care role and provide guidance regarding the caregiver needs that these technologies should address.


Assuntos
Cuidadores , Demência , Humanos , Inquéritos e Questionários , Tecnologia
13.
J Am Chem Soc ; 142(39): 16538-16545, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32931700

RESUMO

The separation of actinides has a vital place in nuclear fuel reprocessing, recovery of radionuclides, and remediation of environmental contamination. Here we propose a new paradigm of nanocluster-based actinide separation, namely, nanoextraction, that can achieve efficient sequestration of uranium in an unprecedented form of giant coordination nanocages using a cone-shaped macrocyclic pyrogallol[4]arene as the extractant. The U24-based hexameric pyrogallol[4]arene nanocages with distinctive [U2(PG)2] binuclear units (PG = pyrogallol) that rapidly assembled in situ in monophasic solvent were identified by single-crystal X-ray diffraction, MALDI-TOF mass spectrometry, NMR spectroscopy, and small-angle X-ray and neutron scattering. Comprehensive biphasic extraction studies showed that this novel separation strategy has enticing advantages such as fast kinetics, high efficiency, and good selectivity over lanthanides, thereby demonstrating its potential for efficient separation of actinide ions.

14.
J Am Chem Soc ; 142(31): 13606-13613, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658474

RESUMO

The electrochemical synthesis of chemicals from carbon dioxide, which is an easily available and renewable carbon resource, is of great importance. However, to achieve high product selectivity for desirable C2 products like ethylene is a big challenge. Here we design Cu nanosheets with nanoscaled defects (2-14 nm) for the electrochemical production of ethylene from carbon dioxide. A high ethylene Faradaic efficiency of 83.2% is achieved. It is proved that the nanoscaled defects can enrich the reaction intermediates and hydroxyl ions on the electrocatalyst, thus promoting C-C coupling for ethylene formation.

15.
RSC Adv ; 10(35): 20713-20723, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517760

RESUMO

Bismuth ferrite (BiFeO3) is a promising Bi-based perovskite-type material, which is multiferroic due to the coexistence of anti-ferromagnetism and ferroelectricity. During the preparation of pure BiFeO3 nanoparticles, however, the phase structures and species of bismuth-iron-based precursor (BFOH) were still unclear, and so related precursors were prepared. X-ray diffraction, Raman, Fourier transform infrared, and X-ray absorption near-edge structure techniques were used to probe the phase structure and species of the precursors. It was found that the precursor BFOH is composed of Bi6O6(NO3)4(OH)2·2H2O, Bi6O5(NO3)5(OH)3·3H2O, Fe(OH)3, and α-Bi2O3. Calcination treatment and hydrothermal synthesis were used to prepare the pure BiFeO3 phase from the precursor BFOH. The calcination temperature was optimized as 400 °C for preparation of the pure BiFeO3 phase. Meanwhile, hydrothermal conditions for the synthesis of the pure BiFeO3 phase were also optimized as follows: the reaction solution was the mixture solution of Bi(NO3)3·5H2O and Fe(NO3)3·9H2O with cetyltrimethyl ammonium bromide (CTAB) as the surfactant and KOH as the mineralizer; the hydrothermal synthesis was performed at 180 °C for 48 h; the concentration of KOH should be at least 3 M; and the surfactant CTAB can be used to regulate the morphology of the as-prepared BiFeO3 nanoparticles. From the point of view of the microstructure, BiFeO3 nanoparticles prepared by calcination or hydrothermal methods have no notable differences. A formation mechanism from the precursor BFOH to the BiFeO3 product is proposed. By providing an understanding of the precursors, this work is very helpful in the synthesis of bismuth-iron-based nanoparticles.

16.
Adv Mater ; 31(25): e1901124, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062894

RESUMO

Manganese (Mn)-based compounds are important materials for both energy conversion and energy storage. Unfortunately, it has been a significant challenge to develop highly ordered microporous/mesoporous structures for them to provide more active sites for these applications. In order to do so using the soft-templating method, three conditions have to be met, namely, a strong interaction between the inorganic precursor and the organic templates; eliminating the formation of bulk manganese phosphate; and the preservation of the manganese phosphate framework without it collapsing upon template removal. Herein, a soft-templating approach is reported using an organophosphonic acid (n-hexylphosphonic acid) as both the etching and the templating agent, followed by high-vacuum-assisted annealing. This approach simultaneously satisfies the above conditions. Both microporous and mesoporous manganese phosphates with uniform pore sizes and well-defined pore structures are obtained. The utilization of the organophosphonic acid is shown to be the key in the transformation from bulk manganese oxide into a highly ordered microporous phosphate. A very high surface area of 304.1 m2 g-1 is obtained for the microporous manganese phosphate, which is the highest among the reported values for Mn-based compounds. The ultrafine micropores and high specific surface area of our manganese phosphate promote electrocatalytic activity for the oxygen evolution reaction.

18.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226594

RESUMO

Surface enhanced Raman scattering (SERS) is a trace detection technique that extends even to single molecule detection. Its potential application to the noninvasive recognition of lung malignancies by detecting volatile organic compounds (VOCs) that serve as biomarkers would be a breakthrough in early cancer diagnostics. This application, however, is currently limited by two main factors: (1) most VOC biomarkers exhibit only weak Raman scattering; and (2) the high mobility of gaseous molecules results in a low adsorptivity on solid substrates. To enhance the adsorption of gaseous molecules, a ZIF-8 layer is coated onto a self-assembly of gold superparticles (GSPs) in order to slow the flow rate of gaseous biomarkers and depress the exponential decay of the electromagnetic field around the GSP surfaces. Gaseous aldehydes that are released as a result of tumor-specific tissue composition and metabolism, thereby acting as indicators of lung cancer, are guided onto SERS-active GSPs substrates through a ZIF-8 channel. Through a Schiff base reaction with 4-aminothiophenol pregrafted onto gold GSPs, gaseous aldehydes are captured with a 10 ppb limit of detection, demonstrating tremendous prospects for in vitro diagnoses of early stage lung cancer.


Assuntos
Análise Espectral Raman , Biomarcadores Tumorais , Ouro , Nanopartículas Metálicas , Nanotecnologia
19.
Nat Commun ; 8(1): 175, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28765542

RESUMO

The Zr-based metal-organic frameworks are generally prepared by solvothermal procedure. To overcome the slow kinetics of nucleation and crystallization of Zr-based metal-organic frameworks is of great interest and challenging. Here, we find that an ionic liquid as solvent can significantly accelerate the formation of Zr-based metal-organic frameworks at room temperature. For example, the reaction time is shortened to 0.5 h in 1-hexyl-3-methylimidazolium chloride for Zr-based metal-organic framework formation, while that in the conventional solvent N,N-dimethylformamide needs at least 120 h. The reaction mechanism was investigated in situ by 1H nuclear magnetic resonance, spectroscopy synchrotron small angle X-ray scattering and X-ray absorption fine structure. This rapid, low-energy, and facile route produces Zr-based metal-organic framework nanoparticles with small particle size, missing-linker defects and large surface area, which can be used as heterogeneous catalysts for Meerwein-Ponndorf-Verley reaction.Crystallization kinetics of metal-organic frameworks in conventional organic solvents are usually very slow. Here, the authors show that an ionic liquid medium accelerates considerably the formation of Zr-based metal-organic frameworks that are active catalysts in the Meerwein-Ponndorf-Verley reaction.

20.
Acta Biomater ; 47: 40-49, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744067

RESUMO

We report the synthesis and characterization of multifunctional peptides comprised of a hydrogel forming ß-sheet peptide segment and a matrix metalloproteinase 2 substrate containing a propargylglycinyl linker that is further derivatized with an RGD peptide sequence via "click" chemistry. In contrast to currently known systems, these multifunctional peptides formed gels that are stiffer than those formed by their respective precursors. All the peptides showed reversible thermoresponsive properties, which render them as suitable lead systems for a variety of possible biomedical applications. STATEMENT OF SIGNIFICANCE: In general, it has been frequently observed that chemical biofunctionalization of peptide hydrogels adversely affects peptide assembly, hydrogel formation or mechanical properties, which severely compromises their application. A functionalization protocol that allows to generate peptide hydrogels that display significantly improved mechanical properties over their unfunctionalized counterparts is reported in this work. These peptides also showed thermoresponsive viscoelastic characteristics, including an example of a peptide hydrogel that displays lower critical solution temperature behaviour.


Assuntos
Hidrogéis/química , Peptídeos/química , Temperatura , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Metaloproteinase 2 da Matriz/metabolismo , Peptídeos/síntese química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...