Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Cells ; 12(18)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37759448

RESUMO

Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias Orofaríngeas , Humanos , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Canais de Cálcio , Hiperplasia , Proteína 1 Inibidora de Diferenciação
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077186

RESUMO

Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Etanol/metabolismo , Etanol/toxicidade , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
Int J Oral Sci ; 14(1): 16, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35307731

RESUMO

Bacterial infection is a common finding in patients, who develop medication-related osteonecrosis of the jaw (MRONJ) by the long-term and/or high-dose use of anti-resorptive agents such as bisphosphonate (BPs). However, pathological role of bacteria in MRONJ development at the early stage remains controversial. Here, we demonstrated that commensal microbiota protects against MRONJ development in the pulp-exposed periapical periodontitis mouse model. C57/BL6 female mice were treated with intragastric broad-spectrum antibiotics for 1 week. Zoledronic acid (ZOL) through intravenous injection and antibiotics in drinking water were administered for throughout the experiment. Pulp was exposed on the left maxillary first molar, then the mice were left for 5 weeks after which bilateral maxillary first molar was extracted and mice were left for additional 3 weeks to heal. All mice were harvested, and cecum, maxilla, and femurs were collected. ONJ development was assessed using µCT and histologic analyses. When antibiotic was treated in mice, these mice had no weight changes, but developed significantly enlarged ceca compared to the control group (CTL mice). Periapical bone resorption prior to the tooth extraction was similarly prevented when treated with antibiotics, which was confirmed by decreased osteoclasts and inflammation. ZOL treatment with pulp exposure significantly increased bone necrosis as determined by empty lacunae and necrotic bone amount. Furthermore, antibiotics treatment could further exacerbate bone necrosis, with increased osteoclast number. Our findings suggest that the commensal microbiome may play protective role, rather than pathological role, in the early stages of MRONJ development.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Microbiota , Doenças Periapicais , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Difosfonatos , Feminino , Humanos , Camundongos , Ácido Zoledrônico
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929144

RESUMO

Bacterial infection is a common finding in patients, who develop medication-related osteonecrosis of the jaw (MRONJ) by the long-term and/or high-dose use of anti-resorptive agents such as bisphosphonate (BPs). However, pathological role of bacteria in MRONJ development at the early stage remains controversial. Here, we demonstrated that commensal microbiota protects against MRONJ development in the pulp-exposed periapical periodontitis mouse model. C57/BL6 female mice were treated with intragastric broad-spectrum antibiotics for 1 week. Zoledronic acid (ZOL) through intravenous injection and antibiotics in drinking water were administered for throughout the experiment. Pulp was exposed on the left maxillary first molar, then the mice were left for 5 weeks after which bilateral maxillary first molar was extracted and mice were left for additional 3 weeks to heal. All mice were harvested, and cecum, maxilla, and femurs were collected. ONJ development was assessed using μCT and histologic analyses. When antibiotic was treated in mice, these mice had no weight changes, but developed significantly enlarged ceca compared to the control group (CTL mice). Periapical bone resorption prior to the tooth extraction was similarly prevented when treated with antibiotics, which was confirmed by decreased osteoclasts and inflammation. ZOL treatment with pulp exposure significantly increased bone necrosis as determined by empty lacunae and necrotic bone amount. Furthermore, antibiotics treatment could further exacerbate bone necrosis, with increased osteoclast number. Our findings suggest that the commensal microbiome may play protective role, rather than pathological role, in the early stages of MRONJ development.


Assuntos
Animais , Feminino , Humanos , Camundongos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Conservadores da Densidade Óssea , Difosfonatos , Microbiota , Doenças Periapicais , Ácido Zoledrônico
5.
Exp Cell Res ; 405(1): 112656, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033760

RESUMO

DYRK1A, one of the dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), plays an important role in various biological processes by regulating downstream targets via kinase-dependent and independent mechanisms. Here, we report a novel role of DYRK1A in maintaining tumor growth and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC) cells. Deletion of DYRK1A from OSCC cells abrogated their in vivo tumorigenicity and self-renewal capacity, the key features of cancer stem-like cells (CSCs; also referred to as tumor-initiating cells). The DYRK1A deletion also induced the suppression of CSC populations and properties, such as migration ability and chemoresistance. Conversely, ectopic expression of DYRK1A in OSCC cells augmented their CSC phenotype. Among five DYRK members (DYRK1A, 1B, 2, 3, and 4), DYRK1A is the most dominantly expressed kinase, and its expression is upregulated in OSCC compared to normal oral epithelial cells. More importantly, DYRK1A was highly enriched in various CSC-enriched OSCC populations compared to their corresponding non-CSC populations, indicating its pivotal role in cancer progression and stemness. Further, our study revealed that fibroblast growth factor 2 (FGF2) is a key regulator in the DYRK1A-mediated CSC regulation. Functional studies demonstrated that the loss of DYRK1A inhibits CSC phenotype via reduction of FGF2. Overexpression of DYRK1A promotes CSC phenotype via upregulation of FGF2. Our study delineates a novel mechanism of cancer stemness regulation by DYRK1A-FGF2 axis in OSCC. Thus, inhibition of DYRK1A would lead to a potential novel therapeutic option for targeting CSCs in OSCC.


Assuntos
Carcinogênese/patologia , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Orofaríngeas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Dyrk
6.
Oncol Rep ; 45(1): 291-298, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33155662

RESUMO

Cancer stem­like cells (CSCs; also referred to as tumor­initiating cells) play crucial roles in tumor progression and aggressiveness. Recent studies have demonstrated the antitumor activity of zoledronic acid (ZA), a third­generation bisphosphonate, in various types of human cancer. However, its effect on oral CSCs and the underlying mechanism remain obscure. The present study demonstrated that ZA suppresses the growth and stemness properties of oral/oropharyngeal squamous cell carcinoma (OSCC) cells. ZA inhibited the malignant characteristics of OSCC cells, such as anchorage­independent growth and epithelial thickening in organotypic raft cultures. Moreover, ZA treatment resulted in suppression of self­renewal capacity, a key feature of CSCs. ZA also inhibited important CSC properties, such as migration and chemo­radioresistance. Mechanistically, ZA exposure significantly decreased chemokine (C­C motif) ligand 3 (CCL3) expression in OSCC cells. It was further demonstrated that CCL3 signaling via its receptor is crucial for supporting the CSC phenotype in OSCC cells. Moreover, an antagonist of the CCL3 receptor reversed the effect of CCL3 on CSC properties, and exogenous CCL3 rescued the suppressaed CSC phenotype in ZA­treated OSCC cells. These results demonstrated that ZA suppresses the CSC phenotype in OSCC cells by reducing CCL3 expression, suggesting that ZA may be an effective therapeutic agent for oral cancer by targeting CSCs.


Assuntos
Quimiocina CCL3/fisiologia , Neoplasias Bucais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Ácido Zoledrônico/farmacologia , Linhagem Celular Tumoral , Quimiocina CCL3/análise , Humanos , Neoplasias Bucais/imunologia , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
7.
Hong Kong Med J ; 26(5): 432-437, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33089788

RESUMO

The American College of Cardiology/American Heart Association released guidelines for the prevention, detection, evaluation, and management of high blood pressure (BP) in adults in 2017. In 2018, the European Society of Cardiology (ESC)/European Society of Hypertension (ESH) published new guidelines for the management of arterial hypertension. Despite the many similarities between these two guidelines, there are also major differences in the guidelines in terms of diagnosis and treatment of hypertension. A working group of the Hong Kong College of Physicians (HKCP) convened and conducted a focused discussion on important issues of public interest, including classification of BP, BP measurement, thresholds for initiation of antihypertensive medications, BP treatment targets, and treatment strategies. The HKCP concurs with the 2018 ESC/ESH guideline on BP classification, which defines hypertension as office systolic BP ≥140 mm Hg and/or diastolic BP ≥90 mm Hg. The HKCP also acknowledges the growing evidence of home BP monitoring and ambulatory BP monitoring in the diagnosis and monitoring of hypertension and endorses the wider use of both methods. The HKCP also supports the direction of a risk-based approach for initiation of antihypertensive medications and the specification of a treatment target range for both systolic and diastolic BP with consideration of different age-groups and specific disease subgroups. Non-pharmacological interventions are crucial, both at the societal and individual patient levels. The recent guideline publications provide good opportunities to increase public awareness of hypertension and encourage lifestyle modifications among the local population.


Assuntos
Cardiologia/normas , Hipertensão , Guias de Prática Clínica como Assunto , American Heart Association , Hong Kong , Humanos , Sociedades Médicas , Estados Unidos
8.
Sci Rep ; 10(1): 6383, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286430

RESUMO

Periodontitis is a local and systemic inflammatory condition and a risk factor of atherosclerosis, but no studies investigated the effect of a statin on atherogenesis affected by severe periodontitis. In this study, we investigated the effect of rosuvastatin (RSV) on atherogenesis in Apolipoprotein E-deficient mice receiving silk ligature placement around the maxillary second molars. Mice with the ligature placement developed severe periodontitis and vascular inflammation. RSV significantly inhibited the development of periodontitis and vascular inflammation and remarkably blocked the increased lipid deposition and the atherogenic gene expression in the arterial wall and aortic sinus induced by severe periodontitis. To understand the mechanistic effect of RSV on periodontitis-associated atherogenesis, we investigated the in vitro effect of RSV on various effect of TNF-α, a major proinflammatory cytokine for periodontitis and atherogenesis. We found that RSV notably inhibited the TNF-α-induced osteoclast formation, endothelial cell phenotypic changes, foam cell formation, and the expression of CD47 and other oncogenes in arterial smooth muscle cells. Taken together, our study indicates that RSV prevents the exacerbation of atherosclerosis induced periodontitis by inhibiting local, systemic and vascular inflammation, as well as the expression of CD47 from arterial smooth muscle cells in mice.


Assuntos
Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Periodontite/complicações , Rosuvastatina Cálcica/uso terapêutico , Animais , Aterosclerose/etiologia , Linhagem Celular , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Seio Aórtico/efeitos dos fármacos
10.
Front Physiol ; 11: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116745

RESUMO

Pulpal and periapical diseases affect a large segment of the population. The role of microbial infections and host effector molecules in these diseases is well established. However, the interaction between host genes and environmental factors in disease susceptibility and progression is less well understood. Studies of genetic polymorphisms in disease relevant genes have suggested that individual predisposition may contribute to susceptibility to pulpal and periapical diseases. Other studies have explored the contribution of epigenetic mechanisms to these diseases. Ongoing research expands the spectrum of non-coding RNAs in pulpal disease to include viral microRNAs as well. This review summarizes recent advances in the genetic and epigenetic characterization of pulpal and periapical disease, with special emphasis on recent data that address the pathogenesis of irreversible pulpal pathosis and apical periodontitis. Specifically, proinflammatory and anti-inflammatory gene expression and gene polymorphism, as well as recent data on DNA methylation and microRNAs are reviewed. Improved understanding of these mechanisms may aid in disease prevention as well as in improved treatment outcomes.

13.
Int J Oral Sci ; 12(1): 3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911577

RESUMO

High-risk human papillomaviruses (HPVs) are involved in the development of several human cancers, including oropharyngeal squamous cell carcinomas. However, many studies have demonstrated that HPV alone is not sufficient for the oncogenic transformation of normal human epithelial cells, indicating that additional cofactors are required for the oncogenic conversion of HPV-infected cells. Inasmuch as chronic inflammation is also closely associated with carcinogenesis, we investigated the effect of chronic exposure to tumor necrosis factor α (TNFα), the major proinflammatory cytokine, on oncogenesis in two immortalized oral keratinocyte cell lines, namely, HPV16-immortalized and human telomerase reverse transcriptase (hTERT)-immortalized cells. TNFα treatment led to the acquisition of malignant growth properties in HPV16-immortalized cells, such as (1) calcium resistance, (2) anchorage independence, and (3) increased cell proliferation in vivo. Moreover, TNFα increased the cancer stem cell-like population and stemness phenotype in HPV16-immortalized cells. However, such transforming effects were not observed in hTERT-immortalized cells, suggesting an HPV-specific role in TNFα-promoted oncogenesis. We also generated hTERT-immortalized cells that express HPV16 E6 and E7. Chronic TNFα exposure successfully induced the malignant growth and stemness phenotype in the E6-expressing cells but not in the control and E7-expressing cells. We further demonstrated that HPV16 E6 played a key role in TNFα-induced cancer stemness via suppression of the stemness-inhibiting microRNAs miR-203 and miR-200c. Overexpression of miR-203 and miR-200c suppressed cancer stemness in TNFα-treated HPV16-immortalized cells. Overall, our study suggests that chronic inflammation promotes cancer stemness in HPV-infected cells, thereby promoting HPV-associated oral carcinogenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/metabolismo , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Boca/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Telomerase/genética , Fator de Necrose Tumoral alfa/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Carcinoma de Células Escamosas/patologia , Transformação Celular Viral/genética , Regulação da Expressão Gênica , Genes Virais , Papillomavirus Humano 16/genética , Humanos , MicroRNAs/genética , Boca/virologia , Neoplasias Bucais/patologia , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Telomerase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-781379

RESUMO

High-risk human papillomaviruses (HPVs) are involved in the development of several human cancers, including oropharyngeal squamous cell carcinomas. However, many studies have demonstrated that HPV alone is not sufficient for the oncogenic transformation of normal human epithelial cells, indicating that additional cofactors are required for the oncogenic conversion of HPV-infected cells. Inasmuch as chronic inflammation is also closely associated with carcinogenesis, we investigated the effect of chronic exposure to tumor necrosis factor α (TNFα), the major proinflammatory cytokine, on oncogenesis in two immortalized oral keratinocyte cell lines, namely, HPV16-immortalized and human telomerase reverse transcriptase (hTERT)-immortalized cells. TNFα treatment led to the acquisition of malignant growth properties in HPV16-immortalized cells, such as (1) calcium resistance, (2) anchorage independence, and (3) increased cell proliferation in vivo. Moreover, TNFα increased the cancer stem cell-like population and stemness phenotype in HPV16-immortalized cells. However, such transforming effects were not observed in hTERT-immortalized cells, suggesting an HPV-specific role in TNFα-promoted oncogenesis. We also generated hTERT-immortalized cells that express HPV16 E6 and E7. Chronic TNFα exposure successfully induced the malignant growth and stemness phenotype in the E6-expressing cells but not in the control and E7-expressing cells. We further demonstrated that HPV16 E6 played a key role in TNFα-induced cancer stemness via suppression of the stemness-inhibiting microRNAs miR-203 and miR-200c. Overexpression of miR-203 and miR-200c suppressed cancer stemness in TNFα-treated HPV16-immortalized cells. Overall, our study suggests that chronic inflammation promotes cancer stemness in HPV-infected cells, thereby promoting HPV-associated oral carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...