Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 7: 435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793651

RESUMO

Porcine epidemic diarrhea virus (PEDV) is one of the major enteric pathogens, causing severe enteric disease, resulting in enormous economic losses. The ORF3 gene encodes an accessory protein which is related to the infectivity and virulence of PEDV. In this study, 33 PEDV positive field samples were collected from Guangxi, from 2017 to 2019, and the genetic diversity of ORF3 was investigated. Thirty-eight strains of ORF3 were obtained, and these were composed of five strains of ORF3 named Guangxi naturally truncated strains that were 293 bp in length, with continuous deletions from 172 to 554 bp. The Guangxi naturally truncated strains encoded a truncated protein of 89 amino acids, which had clustered into a new group referred to as Group 3, and these might be involved in the variations of virulence. Three genotypes (G1-1 subgroup, G1-3 subgroup, and Group 3) existed simultaneously in Guangxi based on the genetic and evolutionary analysis of the ORF3 gene. The sequence information in the current study will hopefully facilitate the establishment of a diagnostic method that can differentiate the PEDV field stains. Continued surveillance will be useful for monitoring PEDV transmission. Differentiation of the ORF3 genes in PEDV field strains can help us to choose an appropriate PEDV vaccine candidate in the future and prevent outbreaks of PED more effectively.

2.
Ultrason Sonochem ; 69: 105259, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32738455

RESUMO

Petroleum is a continuous and dynamically stable colloidal system. In the process of oil extraction, transportation, and post-treatment, the stability of the petroleum sol system is easily destroyed, resulting in asphaltenes precipitation that can make pore throat, oil wells, and pipelines blocked, thereby damaging the reservoir and reducing oil recovery. In this paper, removing near-well plugging caused by asphaltene deposition with high-power ultrasound is investigated. Six PZT transducers with different parameters were used to carry out the experimental study. Results show that ultrasonic frequency is one important factor for removing colloidal precipitation plugging in cores, it could not be too high nor too low. The optimum ultrasonic frequency is 25 kHz; Selecting transducers with a higher power is an effective way to improve the removal efficiency. The optimum ultrasonic power is 1000 W. With the increase of ultrasonic treatment time, the recovery rate reaches the maximum and tends to be stable. ultrasonic processing time should be controlled within 120 min. Besides, three methods - ultrasonic treatment alone, chemical injection alone, and ultrasound-chemical method - for removing colloidal precipitation plugging are compared. Results indicate that the ultrasound-assisted chemical method is better than chemical injection alone or ultrasonic treatment alone to remove colloidal sediment in the core. Finally, the mechanism of the ultrasonic deplugging technique is analyzed from three aspects: cavitation effect, the thermal effect, and mechanical vibration.

3.
Bioresour Technol ; 314: 123758, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32629379

RESUMO

Pyrolysis of Spirulina Platensis (SP) microalgae was carried out under different reaction environment such as nitrogen (N2) and carbon dioxide (CO2) at different reaction temperatures of 300, 350, 400, 450 and 500 °C. Catalytic upgradations were examined over solid acid (ZSM-5) and solid base (MgO) catalyst, and with ZSM-5-MgO catalysts mixtures. Results showed, pyrolysis of non-catalytic biomass yielded maximum bio-oil of 43.6% under N2. However catalytic upgradation in CO2 environment produced lower bio-oil due to the coke formation. Maximum bio-oil (46.2 wt%) was obtained with basic metal MgO catalyst in N2 environment compared to other catalyst and environments. Mixture of MgO-ZSM-5 catalyst improved the bio-oil yield (37.8-48.6 wt%) compared to individual catalytic reaction under N2 and CO2. Higher high heating value (HHV) was observed in catalytic bio-oil 36.8 MJ/Kg. Bio-oil (catalytic) analysis revealed that 64-70% of compounds are in hydrocarbon range. Bio-oil was rich in hydrocarbons of C7-C18 range with less oxygenated compounds.


Assuntos
Microalgas , Pirólise , Biocombustíveis , Biomassa , Dióxido de Carbono , Catálise , Temperatura Alta , Hidrocarbonetos , Nitrogênio , Óleos de Plantas , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...