Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973381

RESUMO

A tungsten disulfide (WS2) nanosheet-based aptamer sensor was developed to detect patulin (PAT). The 5'-end of the PAT aptamer was modified with a cyanine 3 (Cy3) fluorophore, which self-assembled on WS2 nanosheets. The interaction between the Cy3 fluorophore at the 5'-end of the PAT aptamer and the WS2 nanosheets resulted in reduced fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET). The introduction of PAT into this sensing system led to hybridization with the PAT aptamer, forming a G-quadruplex/PAT complex with low affinity for the WS2 nanosheet surface. This hybridization increased the distance between the Cy3 fluorophore and the WS2 nanosheets, inhibiting FRET and producing a strong FL signal. Under optimal experimental conditions, the FL intensity of the sensing system demonstrated an excellent linear correlation with PAT concentrations ranging from 0.5 to 40.0 ng mL-1, and it achieved a detection limit (S/N = 3) of 0.23 ng mL-1. This sensing system offers enhanced specificity for PAT detection and has the potential for broad application in detecting other toxins by substituting the sequence of the recognition aptamer.

2.
Front Microbiol ; 14: 1314887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188586

RESUMO

Sugarcane (Saccharum officinarum L.) may be infected with Apiospora, which can produce the toxin 3-nitropropionic acid (3-NPA) during improper transportation and storage. The consumption of sugarcane that contains 3-NPA can lead to food poisoning. Therefore, this study sought to explore a novel biocontrol agent to prevent and control Apiospora mold. Bacteria were isolated from the soil of healthy sugarcane and identified as Bacillus velezensis T9 through colony morphological, physiological and biochemical characterization and molecular identification. The inhibitory effect of B. velezensis T9 on Apiospora mold on sugarcane was analyzed. Assays of the cell suspension of strain T9 and its cell-free supernatant showed that T9 had significant in vitro antifungal activities against Apiospora arundinis and thus, would be a likely antagonist. Scanning electron microscopy and transmission electron microscopy showed that treatment with T9 significantly distorted the A. arundinis mycelia, perforated the membrane, contracted the vesicles, and decomposed most organelles into irregular fragments. A re-isolation experiment demonstrates the ability of T9 to colonize the sugarcane stems and survive in them. This strain can produce volatile organic compounds (VOCs) that are remarkably strong inhibitors, and it can also form biofilms. Additionally, the cell-free supernatant significantly reduced the ability of A. arundinis to produce 3-NPA and completely inhibited its production at 10%. Therefore, strain T9 is effective at controlling A. arundinis and has the potential for further development as a fungal prevention agent for agricultural products.

3.
Anal Methods ; 14(46): 4872-4878, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416138

RESUMO

An aptamer sensor based on manganese dioxide (MnO2) nanosheets was developed for the detection of zearalenone (ZEN). The ZEN aptamer was modified at the 5'-end by a 6-carboxyfluorescein (6-FAM) fluorophore with self-assembly on MnO2 nanosheets. Interaction of the 6-FAM fluorophore at the 5'-end of the ZEN aptamer with the MnO2 nanosheet lowered fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET). The introduction of ZEN into the sensing system resulted in hybridization with the ZEN aptamer, forming a stable G-quadruplex/ZEN, which exhibited a low affinity for the MnO2 nanosheet surface. The distance between the 6-FAM fluorophore and MnO2 nanosheet hampered FRET, with a consequent strong FL signal. Under the optimal experimental conditions, the FL intensity of the sensing system showed a good linear correlation with ZEN concentration in the range of 1.5-10.0 ng mL-1, and a detection limit (S/N = 3) of 0.68 ng mL-1. The sensing system delivered enhanced specificity for the detection of ZEN, and can find wide application in the detection of other toxins by replacing the sequence of the recognition aptamer.


Assuntos
Nomes , Zearalenona , Compostos de Manganês , Óxidos , Oligonucleotídeos , Corantes Fluorescentes , Ionóforos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...