Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38657125

RESUMO

Cuprous thiocyanate (CuSCN) emerges as a prime candidate among inorganic hole-transport materials, particularly suitable for the fabrication of perovskite solar cells. Nonetheless, there is an Ohmic contact degradation between the perovskite and CuSCN layers. This is induced by polar solvents and undesired purities, which reduce device efficiency and operational stability. In this work, we introduce amidinothiourea (ASU) as an intermediate layer between perovskites and CuSCN to overcome the above obstacles. The characterization results confirm that ASU-modified perovskites have eliminated trap-induced defects by strong chemical bonding between -NH- and C═S from ASU and under-coordinated ions in perovskites. The interfacial engineering based on the ASU also reduces the potential barrier between the perovskite and CuSCN layers. The ASU-treated perovskite solar cells (PSC) with a gold electrode obtains an improved power conversion efficiency (PCE) from 16.36 to 18.03%. Furthermore, after being stored for 1800 h in ambient air (relative humidity (RH) = 45%), the related device without encapsulation maintains over 90% of its initial efficiency. The further combination of ASU and carbon-tape electrodes demonstrates its potential to fabricate low-cost but stable carbon-based PSCs. This work finds a universal approach for the fabrication of efficient and stable PSCs with different device structures.

2.
Cancer ; 130(14): 2472-2481, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470375

RESUMO

BACKGROUND: Both venetoclax plus a hypomethylating agent (VEN/HMA) and cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CAG) are low-intensity regimens for older patients with acute myeloid leukemia (AML) that show good efficacy and safety. It is unknown how VEN/HMA compares with the CAG regimen for the treatment of newly diagnosed AML. METHODS: The outcomes of patients with newly diagnosed AML treated with VEN/HMA were compared with those of patients treated with a CAG-based regimen. Propensity score matching between these two cohorts at a 1:1 ratio was performed according to age at diagnosis, sex, Eastern Cooperative Oncology Group performance status, state of fitness, and European LeukemiaNet (ELN) 2022 risk stratification to minimize bias. RESULTS: A total of 84 of 96 patients in the VEN/HMA cohort were matched with 84 of 147 patients in the CAG cohort. VEN/HMA resulted in a better response than the CAG-based regimens, as indicated by a higher composite complete remission (CRc) rate (82.1% vs. 60.7%; p = .002) and minimal residual disease negativity rate (88.2% vs. 68.2%; p = .009). In patients with an ELN adverse risk, VEN/HMA was associated with a higher CRc rate compared to CAG (80.5% vs. 58.3%; p = .006). VEN/HMA was associated with longer event-free survival (EFS) (median EFS, not reached vs. 4.5 months; p = .0004), whereas overall survival (OS) was comparable between the two cohorts (median OS, not reached vs. 18 months; p = .078). CONCLUSIONS: The VEN/HMA regimen may result in a better response than CAG-based treatment in older patients with newly diagnosed AML.


Assuntos
Aclarubicina , Protocolos de Quimioterapia Combinada Antineoplásica , Compostos Bicíclicos Heterocíclicos com Pontes , Citarabina , Fator Estimulador de Colônias de Granulócitos , Leucemia Mieloide Aguda , Pontuação de Propensão , Sulfonamidas , Humanos , Feminino , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Idoso , Citarabina/administração & dosagem , Citarabina/uso terapêutico , Aclarubicina/administração & dosagem , Aclarubicina/uso terapêutico , Pessoa de Meia-Idade , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Idoso de 80 Anos ou mais
3.
Adv Sci (Weinh) ; 11(1): e2305524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963855

RESUMO

The aqueous micro batteries (AMBs) are expected to be one of the most promising micro energy storage devices for its safe operation and cost-effectiveness. However, the performance of the AMBs is not satisfactory, which is attributed to strong interaction between metal ions and the electrode materials. Here, the first AMBs are developed with NH4 + as charge carrier. More importantly, to solve the low conductivity and the dissolution during the NH4 + intercalation/extraction problem of perylene material represented by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), the Ti3 C2 Tx MXene with high conductivity and polar surface terminals is introduced as a conductive skeleton (PTCDA/Ti3 C2 Tx MXene). Benefitting from this, the PTCDA/Ti3 C2 Tx MXene electrodes exhibit ultra-high cycle life and rate capability (74.31% after 10 000 galvanostatic chargedischarge (GCD) cycles, and 91.67 mAh g-1 at 15.0 A g-1 , i.e., capacity retention of 45.2% for a 30-fold increase in current density). More significantly, the AMBs with NH4 + as charge carrier and PTCDA/Ti3 C2 Tx MXene anode provide excellent energy density and power density, cycle life, and flexibility. This work will provide strategy for the development of NH4 + storage materials and the design of AMBs.

4.
Sci Total Environ ; 904: 166983, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699487

RESUMO

A waste battery is a kind of hazardous solid waste, and traditional recycling methods can cause serious environmental pollution. In this paper, a pilot study was conducted to reduce the leaching of heavy metals in waste battery power (WBP) by using the wrapping effect of asphalt and explored the feasibility of adding waste battery as a modifier to asphalt. The main components of WBP are determined through microscopic experiments, and its compatibility with asphalt and microscopic mechanism are analyzed; The influence of WBP on asphalt properties are analyzed through routine tests and mixture tests; The leaching test of toxicity is used to analyze the impact of WBP and WBP modified asphalt on the environment. The experimental results indicate that WBP is mainly composed of MnO2, C, and ZnO; There are many wrinkles and grooves on the surface of WBP, which can effectively adsorb asphalt during the modification process, produce anchoring effect, and have good compatibility with asphalt; The components of waste battery adsorb the aging light components in asphalt through their folds and swelling, so that the proportion of heavy components is relatively increased, improving the property indicators of asphalt; From the perspective of engineering property, WBP modified asphalt mixture has strong resistance to deformation and water damage. The leaching concentration of heavy metal ions from bare WBP in soil seriously exceeded the standard. In contrast, when WBP was added to asphalt, the cumulative leaching concentration of heavy metal ions was significantly reduced due to the wrapping effect of asphalt, and the WBP leaching toxicity was greatly suppressed; The method of recycling waste battery and adding it to asphalt as a modifier can prevent the release of heavy metal ions from waste battery into the environment and reduce the risk of the total environmental harm to soil, groundwater and human health.

5.
ACS Omega ; 8(13): 12430-12438, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033797

RESUMO

The vapor-solid reaction method (VRM) is one of the promising techniques to prepare high-performance perovskite solar cells. Herein, PbI2 precursor films were prepared by vacuum evaporation. It was found that the PbI2 precursor films exhibit high crystallinity and orderly morphology at the substrate temperature of 110 °C. On this basis, the precursor films were prepared by VRM to obtain high-quality perovskite films and the power conversion efficiency (PCE) of perovskite solar cells (PSCs) devices reached 17.1%. In contrast, the PbI2 film precursor was prepared on the substrate without being heated and the PCE of the final PSCs devices was only 13.04%.

6.
Small ; 19(20): e2207445, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840662

RESUMO

Poor carrier transport capacity and numerous surface defects of charge transporting layers (CTLs), coupled with misalignment of energy levels between perovskites and CTLs, impact photoelectric conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) profoundly. Herein, a collaborative passivation strategy is proposed based on 4-(chloromethyl) benzonitrile (CBN) as a solution additive for fabrication of both [6,6]-phenyl-C61-butyric acid methylester (PCBM) and poly(triarylamine) (PTAA) CTLs. This additive can improve wettability of PTAA and reduce the agglomeration of PCBM particles, which enhance the PCE and device stability of the PSCs. As a result, a PCE exceeding 20% with a remarkable short circuit current of 23.9 mA cm-2 , and an improved fill factor of 81% is obtained for the CBN- modified inverted PSCs. Devices maintain 80% and 70% of the initial PCE after storage under 30% and 85% humidity ambient conditions for 1000 h without encapsulation, as well as negligible light state PCE loss. This strategy demonstrates feasibility of the additive engineering to improve interfacial contact between the CTLs and perovskites for fabrication of efficient and stable inverted PSCs.

7.
Nanoscale Res Lett ; 14(1): 281, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420778

RESUMO

Herein, γ-AlO(OH) as an inorganic was successfully inserted into MgAl-LDH layer by a one-pot synthesis, the composite as an adsorbent for removing methyl orange (MO) from wastewater. The structure and adsorption performance of γ-AlO(OH)/MgAl-LDH were characterized. The research shows that the expansion (003) plane and the hydroxyl active site of γ-AlO(OH)/MgAl-LDH can promote adsorption capacity and adsorption kinetics, respectively. Therefore, γ-AlO(OH)/MgAl-LDH exhibits a super adsorption performance, which completely adsorbs MO at the concentration of 1000 mg g-1. In addition, the maximum adsorption capacity of MO was 4681.40 mg g-1 according to the Langmuir model. These results indicate that γ-AlO(OH)/MgAl-LDH is a potential adsorbent for the removal of organic dyes in water.

8.
RSC Adv ; 9(42): 24280-24290, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527890

RESUMO

A new photocatalyst, few-layer MoS2 grown in MgAl-LDH interlayers (MoS2/MgAl-LDH), was prepared by a facile two-step hydrothermal synthesis. The structural and photocatalytic properties of the obtained material were characterized by several techniques including powder X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis absorption spectroscopy. The MoS2/MgAl-LDH composite showed excellent photocatalytic performance for methyl orange (MO) degradation at low concentrations (50 mg L-1 and 100 mg L-1). Furthermore, even for a MO solution concentration as high as 200 mg L-1, this composite also presented high degradation efficiency (>84%) and mineralization efficiency (>73%) at 120 min. The results show that the MoS2/MgAl-LDH composite has great potential for application in wastewater treatment.

9.
Nanomaterials (Basel) ; 8(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747406

RESUMO

In this study, a novel Zn2SnO4/BiOBr hybrid photocatalyst was prepared via a mild hydrothermal synthesis combined with a chemical deposition method. The morphological structure, chemical composition, crystal structure, and optical properties were comprehensively characterized by a series of measurement techniques. Morphological observation showed that fine Zn2SnO4 nanoparticles were anchored on the nanoplate surface of a flower-like BiOBr 3D hierarchical structure. The experimental results of UV-vis diffuse reflection spectroscopy revealed that the visible-light absorptive capacity of the Zn2SnO4/BiOBr hybrid photocatalyst was promoted, as compared to that of pure Zn2SnO4. Evidenced by electro-negativity theoretical calculation, Zn2SnO4 and BiOBr possessed matched band edges for accelerating photogenerated charge separation at the interface. The Zn2SnO4/BiOBr hybrid photocatalyst exhibited enhanced photocatalytic performance in the degradation of Rhodamine B (RhB) under visible light irradiation. According to the band energy structure and the experimental results, the enhanced photocatalytic performance was ascribed to the improved visible-light absorptive capacity and the contact interface between Zn2SnO4 nanoparticles and BiOBr nanoplates, being able to favor the prompt charge migration and suppress the recombination of photogenerated carriers in the hybrid system.

10.
Nanoscale ; 7(44): 18595-602, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26490444

RESUMO

Exploration of high-efficiency Pt-free electrochemical catalysts for hydrogen evolution reaction (HER) is considered as a great challenge for the development of sustainable and carbon dioxide free energy conversion systems. In this work, a unique hierarchical nanostructure of few-layered MoSe2 nanosheets perpendicularly grown on carbon nanotubes (CNTs) is synthesized through a one-step solvothermal reaction. This rationally designed architecture based on a highly conductive CNT substrate possesses fully exposed active edges and open structures for fast ion/electron transfer, thus leading to remarkable HER activity with a low onset potential of -0.07 V vs. RHE (reversible hydrogen electrode), a small Tafel slope of 58 mV per decade and excellent long-cycle stability. Therefore, this noble-metal-free and highly efficient catalyst enables prospective applications for industrial, renewable hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...