Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 239: 120064, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201374

RESUMO

Removing harmful antibiotics is essential to reclaiming water from municipal secondary effluent. Electroactive membranes are effective in the removal of antibiotics but challenged by the abundant coexisting macromolecular organic pollutants in municipal secondary effluent. To eliminate the interference of macromolecular organic pollutants in the removal of antibiotics, we propose a novel electroactive membrane with a top polyacrylonitrile (PAN) ultrafiltration layer and a bottom electroactive layer composed of carbon nanotubes (CNTs) and polyaniline (PANi). When filtering the mixture of tetracycline (TC, a typical antibiotic) and humic acid (HA, a typical macromolecular organic pollutant), the PAN-CNT/PANi membrane performed sequential removal. It retained HA at the PAN layer (by ∼96%) and allowed TC to reach the electroactive layer where it was electrochemically oxidized (e.g., by ∼92% at 1.5 V). The TC removal of the PAN-CNT/PANi membrane was marginally affected by HA, unlike that of the control membrane with the electroactive layer on the top that showed decreased TC removal after the addition of HA (e.g., decreased by 13.2% at 1 V). The decreased TC removal of the control membrane was attributed to the attachment (but not competitive oxidation) of HA on the electroactive layer that impaired the electrochemical reactivity. The HA removal prior to TC degradation realized by the PAN-CNT/PANi membrane avoided the attachment of HA and guaranteed TC removal on the electroactive layer. Long-term filtration for 9 h revealed the stability of the PAN-CNT/PANi membrane, and its advantageous structural design was conformed in the context of real secondary effluents.


Assuntos
Antibacterianos , Nanotubos de Carbono , Substâncias Húmicas , Nanotubos de Carbono/química , Filtração , Ultrafiltração
2.
J Hazard Mater ; 436: 129162, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643008

RESUMO

Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.


Assuntos
Poluentes Ambientais , Purificação da Água , Condutividade Elétrica , Eletricidade , Água , Purificação da Água/métodos
3.
Chemosphere ; 294: 133801, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35104551

RESUMO

Azo dyes are typical toxic and refractory organic pollutants widely used in the textile industry. Bio-electrochemical systems (BESs) have great potential for the treatment of azo dyes with the help of microorganisms as biocatalysts and have advanced significantly in recent years. However, the latest and significant advancement and achievements of BESs treating azo dyes have not been reviewed since 8 years ago. This review thus focuses on the recent investigations of BESs treating azo dyes from the year of 2013-2020 in order to broaden the knowledge and deepen the understanding in this field. In this review, azo dyes degradation mechanisms of BESs are first elaborated, followed by the introduction of BES configurations with the emphasis on the novelties. The azo dye degradation performance of BESs is then presented to demonstrate their effectiveness in azo dye removal. Effects of various operating parameters on the overall performance of BESs are comprehensively elucidated, including electrode materials, external resistances and applied potentials, initial concentrations of azo dyes, and co-substrates. Predominant microorganisms responsible for degradation of azo dyes in BESs are highlighted in details. Furthermore, the combination of BESs with other processes to further improve the azo dye removal are discussed. Finally, an outlook on the future research directions and challenges is provided from the viewpoint of realistic applications of the technology.


Assuntos
Compostos Azo , Águas Residuárias , Compostos Azo/química , Corantes/química , Eletrodos , Indústria Têxtil , Águas Residuárias/química
4.
J Hazard Mater ; 402: 123467, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712363

RESUMO

To simultaneously remove carbon and nitrogen from refractory organic wastewater, this study couples the denitrifying biocathode and MnOx/Ti anode to oxidize refractory organic pollutants in the anode chamber and remove NO3--N in the cathode chamber (denitrifying biocathode-electrocatalytic reactor, DBECR). After inoculation, DBECR started up at 1.3 and 1.5 V with NO3--N reduction peak appearing on the cyclic voltammetry curve and increased NO3--N removal by approximately 90 %. Compared to the electrocatalytic reactor without inoculation (ECR), NO3--N removal of DBECR significantly increased from 0.09 to 0.45 kg NO3--N/m3 NCC/d (NCC: net cathodic compartment). NO3--N removal correlated well with charges/current flowing through the circuit of DBECR, further validating the presence of electrotrophic denitrifiers. Moreover, coupling of denitrifying biocathode significantly enhanced methylene blue (MB) removal in the anode chamber (0.18 ± 0.002 and 2.92 ± 0.02 g COD/m2/d for ECR and DBECR, respectively). This was because the growth of eletrotrophic denitrifiers increased the cathodic potential and thus the potential of MnOx/Ti anode. The higher potential of MnOx/Ti anode promoted the generation of hydroxyl radicals and consequently promoted MB removal. This study demonstrated that DBECR not only realized nitrogen removal in the cathode chamber, but also enhanced refractory organic carbon degradation in the anode chamber.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Eletrodos , Titânio , Águas Residuárias
5.
Chemosphere ; 252: 126460, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32197176

RESUMO

Simultaneous enhancement of dye removal and reduction of energy consumption is critical for electrochemical oxidation in treating dyeing wastewater. To address this issue, this work presented a novel process termed biocathode-electrocatalytic reactor (BECR). The dual-chamber BECR employed O2-reducing biocathode instead of normal stainless steel (SS) cathode and MnOx/Ti anode to reduce O2 in the cathode chamber and treat methylene blue (MB) in the anode chamber, respectively. BECR successfully started up at 0.7 and 1 V and substantially improved MB and total organic carbon (TOC) removal compared with the electrocatalytic reactor with SS cathode (ECR-SS), e.g., removal of MB (150 mg L-1) increased from 27.0 ± 0.2% to 78.1 ± 0.4% at 1 V. To achieve the same TOC removal, BECR reduced the energy consumption by approximately 45.7% compared with ECR-SS (19.5 and 35.9 kWh (kg TOC) -1 for BECR and ECR, respectively). To explain the above merits of BECR, M(·OH) (·OH adsorbed on the anode surface) generation, potential of MnOx/Ti anode (Ea), and their correlation were investigated. When coupled with O2-reducing biocathode, MnOx/Ti anode considerably accelerated M(·OH) generation because Ea increased. The increased Ea in BECR was due to the fact that its cathodic reaction was converted to the four-electron O2 reduction, which exhibited a higher cathodic potential than hydrogen evolution reaction on SS cathode in ECR-SS. Thereby, BECR simultaneously promoted dye removal and reduced energy consumption, showing promise in treating dyeing wastewater.


Assuntos
Corantes/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Eletrodos , Oxirredução , Oxigênio , Águas Residuárias
6.
J Colloid Interface Sci ; 552: 319-331, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132634

RESUMO

The aqueous dispersion of graphene oxide (GO) was employed as additive to fabricate antifouling and antibacterial polyethersulfone (PES)/sulfonated polysulfone (SPSf)/GO mixed matrix membranes (MMMs) by the non-solvent induced phase separation (NIPS). The effect of different amounts of GO on the morphology and performance of MMMs were studied. The results showed that the casting solution exhibited an increasing trend in viscosity with increment in GO concentration (from 0 to 0.016 wt%) owing to the hydrogen bonding (H-bonding) interaction among GO, H2O and SPSf. Raman and molecular dynamic (MD) simulations analyses confirmed that there existed H-bonding interaction among SPSf, GO and H2O. Specifically, the agglomeration of GO was inhibited and stable homogeneous casting solution was obtained. Meanwhile, the H-bonding interaction also played a key role in the MMMs structure and improved properties. It was found that GO nanosheets were uniformly embedded to form many cellular-like voids in the asymmetric PES/SPSf/GO MMMs with a sponge-like structure. The pure water flux of the MMMs with a very low GO content of 0.012 wt% was up to 816.9 L/m2h and the rejection of bovine serum albumin (BSA) was more than 99.2% under a pressure of 0.1 MPa. Additionally, the mechanical properties of MMMs was also improved with the increase of GO content. Importantly, the MMMs displayed excellent antifouling and antibacterial performance. A high fouling recovery (94.2%) and antibacterial rate (90.0%) against Escherichia coli (E. coli) obtained were attributed to improved hydrophilicity, enhanced negative charge and GO nano-size effect. In summary, our study provides a simple approach to tailor MMMs with the enhancement of permeation, antifouling and antibacterial properties at a very low content of GO.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Polímeros/farmacologia , Sulfonas/farmacologia , Água/química , Animais , Antibacterianos/química , Incrustação Biológica/prevenção & controle , Bovinos , Grafite/química , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Polímeros/química , Soroalbumina Bovina/química , Sulfonas/química , Propriedades de Superfície
7.
Environ Sci Technol ; 46(24): 13253-61, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23205860

RESUMO

Carboxyls are inherent functional groups of thin-film composite polyamide nanofiltration (NF) membranes, which may play a role in membrane performance and fouling. Their surface presence is attributed to incomplete reaction of acyl chloride monomers during the membrane active layer synthesis by interfacial polymerization. In order to unravel the effect of carboxyl group density on organic fouling, NF membranes were fabricated by reacting piperazine (PIP) with either isophthaloyl chloride (IPC) or the more commonly used trimesoyl chloride (TMC). Fouling experiments were conducted with alginate as a model hydrophilic organic foulant in a solution, simulating the composition of municipal secondary effluent. Improved antifouling properties were observed for the IPC membrane, which exhibited lower flux decline (40%) and significantly greater fouling reversibility or cleaning efficiency (74%) than the TMC membrane (51% flux decline and 40% cleaning efficiency). Surface characterization revealed that there was a substantial difference in the density of surface carboxyl groups between the IPC and TMC membranes, while other surface properties were comparable. The role of carboxyl groups was elucidated by measurements of foulant-surface intermolecular forces by atomic force microscopy, which showed lower adhesion forces and rupture distances for the IPC membrane compared to TMC membranes in the presence of calcium ions in solution. Our results demonstrated that a decrease in surface carboxyl group density of polyamide membranes fabricated with IPC monomers can prevent calcium bridging with alginate and, thus, improve membrane antifouling properties.


Assuntos
Incrustação Biológica/prevenção & controle , Ácidos Carboxílicos/química , Filtração , Membranas Artificiais , Nanotecnologia , Nylons/química , Adesividade , Cloretos/química , Permeabilidade , Piperazina , Piperazinas/química , Eletricidade Estática , Propriedades de Superfície
8.
Biosens Bioelectron ; 26(6): 3000-4, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21190836

RESUMO

Carbon nanotube (CNT) is a promising electrode material and has been used as an anode modifier in microbial fuel cells (MFCs). In this study, a new method of simultaneously adding CNT powders and Geobacter sulfurreducens into the anode chamber of a MFC was used, aiming to form a composite biofilm on the anode. The performance of MFCs such as startup time and steady-state power generation was investigated under conditions of different CNT powders dosages. Results showed that both the startup time and the anodic resistance were reduced. The optimal dosage of CNT powders pre-treated by acid was 4 mg/mL for the anode chamber with an effective volume of 25 mL. The anodic resistance and output voltage of the MFC with CNT powders addition were maintained around 180 Ω and 650 mV during 40 days operation, while those of the MFC without CNT powders addition increased from 250 Ω to 540 Ω and decreased from 630 mV to 540 mV, respectively, demonstrating that adding CNT powders helped stabilize the anodic resistance, thus the internal resistance and power generation during long-term operation. Based on cyclic voltammogram, the electrochemical activity of anodic biofilm was enhanced by adding CNT powders, though no significant increase of the biomass in anodic biofilm was detected by phospholipids analysis. There was no remarkable change of ohmic resistance with an addition of CNT powders revealed by current interrupt method, which indicated that the rate of mass transfer might be promoted by the presence of CNT powders.


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono , Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Biomassa , Impedância Elétrica , Técnicas Eletroquímicas , Eletrodos , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...