Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36984741

RESUMO

Batch pressure-retarded osmosis (PRO) with varied-pressure and multiple-cycle operation using a pressurized variable-volume tank has been proposed as a high-efficiency osmotic energy harvesting technology, but it suffers scalability constraints. In this study, a more scalable batch PRO, namely, atmospheric batch PRO (AB-PRO), was proposed, utilizing an atmospheric tank to receive and store the intermediate diluted draw solution (DS) and a pressure exchanger to recover the pressure energy from the diluted DS before being recycled into the tank. Its performance was further compared with single-stage PRO (SS-PRO) at different flow schemes via analytic models. The results show that the AB-PRO with an infinitesimal per-cycle water recovery (r) approaches the thermodynamic maximum energy production under ideal conditions, outperforming the SS-PRO with lower efficiencies caused by under-pressurization (UP). However, when considering inefficiencies, a ~40% efficiency reduction was observed in AB-PRO owing to UP and entropy generation as the optimal r is no-longer infinitesimal. Nonetheless, AB-PRO is still significantly superior to SS-PRO at low water recoveries (R) and maintains a stable energy efficiency at various R, which is conducive to meeting the fluctuating demand in practice by flexibly adjusting R. Further mitigating pressure losses and deficiencies of energy recovery devices can significantly improve AB-PRO performance.

2.
Environ Sci Technol ; 56(10): 6678-6688, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35475365

RESUMO

Osmotically assisted reverse osmosis (OARO) has shown great potential for low-cost and energy-efficient brine management. However, its performance can be significantly limited by membrane fouling. Here, we performed for the first time a comprehensive study on OARO membrane fouling, explored the associated fouling mechanisms, and evaluated fouling reversibility via simple physical cleaning strategies. First, internal membrane fouling at the draw (permeate) side was shown to be insignificant. Flux behavior in short-term operation was correlated to both the evolution of fouling and the change of internal concentration polarization. In long-term operation, membrane fouling constrained the OARO water flux to a singular, common upper limit, in terms of limiting flux, which was demonstrated to be independent of operating pressures and membrane properties. Generally, once the limiting flux was exceeded, the OARO process performance could not be improved by higher-pressure operation or by utilizing more permeable and selective membranes. Instead, different cyclic cleaning strategies were shown to be more promising alternatives for improving performance. While both surface flushing and osmotic backwashing (OB) were found to be highly effective when using pure water, a full flux recovery could not be achieved when a nonpure solution was used during OB due to severe internal clogging during OB. All in all, the presented findings provided significant implications for OARO operation and fouling control.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Osmose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...