Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 909: 148316, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38401834

RESUMO

The circular RNA/microRNA/mRNA axis is a new layer of non-coding RNA(ncRNA)-based regulatory gene expression networks upstream of numerous cell signaling pathways. Circular RNAPAN3 (circPAN3) is involved in autophagy, fibrosis and apoptosis which are responsible for the reduction incardiac functional capacityfollowingmyocardial infarction(MI). However, the molecular mechanism of circPAN3 association with apoptosis is unknown. In addition, the relationship between quercetin as a cardioprotective factor in MI and circular RNA-dependent regulatory pathways has not yet been elucidated. MI was induced in Wistar rats using the left anterior descending artery (LAD) ligation method. One day after surgery, quercetin (30 mg/kg) was injected intraperitoneal (IP) every other day for two weeks. The expression of circPAN3 was increased in the MI group (P < 0.05). The increase in circPAN3 was accompanied by a decrease in miR-221 (P < 0.0001), an increase in PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001). Quercetin effectively reduced the expression of circPAN3 (P < 0.05), PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001), and increased the expression of miR-221 (P < 0.0001) and the ratio of p-AKT to p-PI3K (P < 0.001). The circPAN3/miR-221/PTEN pathway is an ncRNA-dependent apoptotic pathway in MI cardiac tissue. Quercetin effectively modulated this pathway, resulting in a reduction of cardiac tissue death and improvement in cardiac function after MI. This suggests that the circPAN3/miR-221 axis plays a role in apoptosis in MI, and quercetin can act as a protective candidate by modulating this pathway.


Assuntos
MicroRNAs , Infarto do Miocárdio , Ratos , Animais , Caspase 3/metabolismo , Quercetina/farmacologia , RNA Circular/metabolismo , Ratos Wistar , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo
2.
Immunotherapy ; 15(14): 1157-1169, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37584216

RESUMO

Aim: We predicted the modulation of autophagy and apoptosis in response to temozolomide (TMZ) and IFN-γ based on changes in the expression of non-coding RNAs in C6-induced glioblastoma (GBM). Materials & methods: Each rat received an intraperitoneal injection of TMZ (7.5 mg/kg) and/or IFN-γ (50,000 IU). Results: The reduced expression of H19 and colorectal neoplasia differentially expressed (CRNDE) was associated with a reduction in autophagy in response to TMZ, IFN-γ and TMZ + IFN-γ therapy, whereas the decreased level of miR-29a (proapoptotic miRNA) was associated with an increase in apoptosis. Conclusion: It appears that H19 promotes switching from autophagy to apoptosis in response to combination therapy of TMZ and IFN-γ through the miR-29a/autophagy-related protein 9A (ATG9A) pathway in C6-induced GBM.


Temozolomide (TMZ) is a drug for people with brain cancer. It can make it hard for patients to learn and think, and it can also make the drug stop working, which lets the tumor keep growing. Researchers are looking for other drugs or things that can be taken with TMZ to stop this from happening. In this study, we used a protein called interferon (IFN), which helps fight cancer. We gave mice with brain cancer both TMZ and IFN, and saw that the tumor cells died and the tumor got smaller. We also looked at how IFN and TMZ changed the genetic material of the mouse brain, called RNA. But we need to test this on people to be sure it works.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Ratos , Animais , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , MicroRNAs/genética , Autofagia , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...