Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 43(3): 1071-1088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37883281

RESUMO

Brain extraction, or the task of segmenting the brain in MR images, forms an essential step for many neuroimaging applications. These include quantifying brain tissue volumes, monitoring neurological diseases, and estimating brain atrophy. Several algorithms have been proposed for brain extraction, including image-to-image deep learning methods that have demonstrated significant gains in accuracy. However, none of them account for the inherent uncertainty in brain extraction. Motivated by this, we propose a novel, probabilistic deep learning algorithm for brain extraction that recasts this task as a Bayesian inference problem and utilizes a conditional generative adversarial network (cGAN) to solve it. The input to the cGAN's generator is an MR image of the head, and the output is a collection of likely brain images drawn from a probability density conditioned on the input. These images are used to generate a pixel-wise mean image, serving as the estimate for the extracted brain, and a standard deviation image, which quantifies the uncertainty in the prediction. We test our algorithm on head MR images from five datasets: NFBS, CC359, LPBA, IBSR, and their combination. Our datasets are heterogeneous regarding multiple factors, including subjects (with and without symptoms), magnetic field strengths, and manufacturers. Our experiments demonstrate that the proposed approach is more accurate and robust than a widely used brain extraction tool and at least as accurate as the other deep learning methods. They also highlight the utility of quantifying uncertainty in downstream applications. Additional information and codes for our method are available at: https://github.com/bmri/bmri.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Imageamento por Ressonância Magnética/métodos , Teorema de Bayes , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
3.
Sci Rep ; 13(1): 16279, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770560

RESUMO

Digital Twin (DT) is a novel concept that may bring a paradigm shift for precision medicine. In this study we demonstrate a DT application for estimating the age of onset of disease-specific brain atrophy in individuals with multiple sclerosis (MS) using brain MRI. We first augmented longitudinal data from a well-fitted spline model derived from a large cross-sectional normal aging data. Then we compared different mixed spline models through both simulated and real-life data and identified the mixed spline model with the best fit. Using the appropriate covariate structure selected from 52 different candidate structures, we augmented the thalamic atrophy trajectory over the lifespan for each individual MS patient and a corresponding hypothetical twin with normal aging. Theoretically, the age at which the brain atrophy trajectory of an MS patient deviates from the trajectory of their hypothetical healthy twin can be considered as the onset of progressive brain tissue loss. With a tenfold cross validation procedure through 1000 bootstrapping samples, we found the onset age of progressive brain tissue loss was, on average, 5-6 years prior to clinical symptom onset. Our novel approach also discovered two clear patterns of patient clusters: earlier onset versus simultaneous onset of brain atrophy.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Humanos , Pré-Escolar , Criança , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Transversais , Medicina de Precisão , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso Central/patologia , Convulsões/patologia , Atrofia/patologia
4.
Res Sq ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205476

RESUMO

Digital Twin (DT) is a novel concept that may bring a paradigm shift for precision medicine. In this study we demonstrate a DT application for estimating the age of onset of disease-specific brain atrophy in individuals with multiple sclerosis (MS) using brain MRI. We first augmented longitudinal data from a well-fitted spline model derived from a large cross-sectional normal aging data. Then we compared different mixed spline models through both simulated and real-life data and identified the mixed spline model with the best fit. Using the appropriate covariate structure selected from 52 different candidate structures, we augmented the thalamic atrophy trajectory over the lifespan for each individual MS patient and a corresponding hypothetical twin with normal aging. Theoretically, the age at which the brain atrophy trajectory of an MS patient deviates from the trajectory of their hypothetical healthy twin can be considered as the onset of progressive brain tissue loss. With a 10-fold cross validation procedure through 1000 bootstrapping samples, we found the onset age of progressive brain tissue loss was, on average, 5-6 years prior to clinical symptom onset. Our novel approach also discovered two clear patterns of patient clusters: earlier onset vs. simultaneous onset of brain atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...