Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Case Rep ; 12(1): e8394, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188848

RESUMO

Fazio-Londe disease and Brown-Vialetto-Van Laere syndrome are rare related neurological disorders. Although SLC52A3 and SLC52A2 that encode riboflavin transporters are their only known causative genes, many patients without mutations in these genes have been reported. Clinical and genetic data of a patient with features suggestive of Fazio-Londe disease are presented. Neurological examination revealed significant involvement of cranial nerves and weakness in the lower extremities. Pontobulbar presentations were prominent. EDX study suggested motor neuronopathy. Hearing was normal. She was diagnosed with FL disease. Response to riboflavin supplementation was not favorable. The patient's pedigree suggested recessive inheritance. SLC52A3 and SLC52A2 were screened and mutations were not observed. Results of exome sequencing and segregation analysis suggested that a mutation in TNRC18 is a candidate cause of disease in the patient. The three dimensional structure of the TNRC18 protein was predicted and it was noted that its two conserved domains (BAH and Tudor) interact and that the valine residue affected by the mutation is positioned close to both domains. A mutation in TNRC18 is cautiously reported as the possible cause of FL disease in the patient. The finding warrants further inquiries on TNRC18 about which little is presently known.

2.
Eur J Neurol ; 29(12): 3556-3563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35996994

RESUMO

BACKGROUND AND PURPOSE: Spinal-bulbar muscular atrophy (SBMA) (Kennedy's disease) is a motor neuron disease. Kennedy's disease is nearly exclusively caused by mutations in the androgen receptor encoding gene (AR). The results of studies aimed at identification of the genetic cause of a disease that best approximates SBMA in a pedigree (four patients) without mutations in AR are reported. METHODS: Clinical investigations included thorough neurological and non-neurological examinations and testing. Genetic analysis was performed by exome sequencing using standard protocols. UBA1 mutations were modeled on the crystal structure of UBA1. RESULTS: The clinical features of the patients are described in detail. A missense mutation in UBA1 (c.T1499C; p.Ile500Thr) was identified as the probable cause of the non-Kennedy SBMA in the pedigree. Like AR, UBA1 is positioned on chromosome X. UBA1 is a highly conserved gene. It encodes ubiquitin-like modifier activating enzyme 1 (UBA1) which is the major E1 enzyme of the ubiquitin-proteasome system. Interestingly, UBA1 mutations can also cause infantile-onset X-linked spinal muscular atrophy (XL-SMA). The mutation identified here and the XL-SMA causative mutations were shown to affect amino acids positioned in the vicinity of UBA1's ATP binding site and to cause structural changes. CONCLUSION: UBA1 was identified as a novel SBMA causative gene. The gene affects protein homeostasis which is one of most important components of the pathology of neurodegeneration. The contribution of this same gene to the etiology of XL-SMA is discussed.


Assuntos
Artrogripose , Atrofia Bulboespinal Ligada ao X , Doença dos Neurônios Motores , Atrofia Muscular Espinal , Enzimas Ativadoras de Ubiquitina , Humanos , Artrogripose/complicações , Atrofia Bulboespinal Ligada ao X/genética , Doença dos Neurônios Motores/complicações , Atrofia Muscular/complicações , Atrofia Muscular Espinal/genética , Receptores Androgênicos/genética , Ubiquitinas , Enzimas Ativadoras de Ubiquitina/genética
3.
J Med Genet ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879052

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. The approximately 50 known ALS-associated genes do not fully explain its heritability, which suggests the existence of yet unidentified causative genes. We report results of studies aimed at identification of the genetic cause of ALS in a pedigree (three patients) without mutations in the common ALS-causative genes. METHODS: Clinical investigations included thorough neurological and non-neurological examinations and testings. Genetic analysis was performed by exome sequencing. Functional studies included identification of altered splicing by PCR and sequencing, and mutated proteins by western blot analysis. Apoptosis in the presence and absence of tunicamycin was assessed in transfected HEK293T cells using an Annexin-PE-7AAD kit in conjunction with flow cytometry. RESULTS: Clinical features are described in detail. Disease progression in the patients of the pedigree was relatively slow and survival was relatively long. An RNF13 mutation was identified as the cause of the recessively inherited ALS in the pedigree. The gene is highly conserved, and its encoded protein (RING finger protein 13) can potentially affect various neurodegenerative-relevant functions, including protein homeostasis. The RNF13 splice site mutation caused expression of two mis-spliced forms of RNF13 mRNA and an aberrant RNF13 protein, and affected apoptosis. CONCLUSION: RNF13 was identified as a novel causative gene of recessively inherited ALS. The gene affects protein homeostasis, which is one of most important components of the pathology of neurodegeneration. The contribution of RNF13 to the aetiology of another neurodegenerative disease is discussed.

4.
Neuromuscul Disord ; 31(6): 528-531, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824075

RESUMO

Sandhoff disease is a rare fatal infantile neurologic disorder. Adult onset Sandhoff is even rarer. Variability of clinical features in adult onset Sandhoff patients and overlaps between these and features of other neurologic diseases have sometimes led to mis-diagnosis. We describe an adult onset Sandhoff disease affected individual whose clinical presentation were also consistent with the Brown-Vialetto-Van Laere syndrome (BVVL) diagnosis. Screening of BVVL-causing genes, SLC52A3 and SLC52A2, did not identify candidate disease-causing mutations, but exome sequencing revealed compound heterozygous mutations in the known Sandhoff disease-causing gene, HEXB. Decreased blood hexosaminidase activity and evidence of cerebellar atrophy confirmed Sandhoff disease diagnosis. To the best of our knowledge, this is the first report of a Sandhoff disease case that mimics BVVL and that presents with prominent cranial nerve involvement. For differential diagnosis, measurement of hexosaminidase activity and MRI should quickly be performed. Genetic analysis can be done for confirmation of diagnosis.


Assuntos
Paralisia Bulbar Progressiva/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Doença de Sandhoff/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Imageamento por Ressonância Magnética , Mutação , Sequenciamento do Exoma , Adulto Jovem
5.
J Neurol ; 268(2): 640-650, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32897397

RESUMO

BACKGROUND: Charcot-Marie-Tooth (CMT) disease is a prevalent and heterogeneous peripheral neuropathy. Most patients affected with the axonal form of CMT (CMT2) do not harbor mutations in the approximately 90 known CMT-associated genes. We aimed to identify causative genes in two CMT2 pedigrees. METHODS: Neurologic examination, laboratory tests and brain MRIs were performed. Genetic analysis included exome sequencing of four patients from the two pedigrees. The predicted effect of a deep intronic mutation on splicing was tested by regular and real-time PCR and sequencing. RESULTS: Clinical data were consistent with CMT2 diagnosis. Inheritance patterns were autosomal recessive. Exome data of CMT2-101 did not include mutations in known CMT-associated genes. Sequence data, segregation analysis, bioinformatics analysis, evolutionary conservation, and information in the literature strongly implicated HADHA as the causative gene. An intronic variation positioned 23 nucleotides away from following intron/exon border in GDAP1 was ultimately identified as cause of CMT in CMT2-102. It was shown to affect splicing. CONCLUSION: The finding of a HADHA mutation as a cause of CMT is of interest because its encoded protein is a subunit of the mitochondrial trifunctional protein (MTP) complex, a mitochondrial enzyme involved in long chain fatty acid oxidation. Long chain fatty acid oxidation is an important source of energy for skeletal muscles. The mutation found in CMT2-102 is only the second intronic mutation reported in GDAP1. The mutation in the CMT2-102 pedigree was outside the canonical splice site sequences, emphasizing the importance of careful examination of available intronic sequences in exome sequence data.


Assuntos
Doença de Charcot-Marie-Tooth , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Doença de Charcot-Marie-Tooth/genética , Consanguinidade , Genótipo , Humanos , Mutação , Linhagem
6.
Neurobiol Aging ; 99: 102.e1-102.e10, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189404

RESUMO

Brown-Vialetto-Van Laere (BVVL) and Fazio-Londe are disorders with amyotrophic lateral sclerosis-like features, usually with recessive inheritance. We aimed to identify causative mutations in 10 probands. Neurological examinations, genetic analysis, audiometry, magnetic resonance imaging, biochemical and immunological testings, and/or muscle histopathology were performed. Mutations in known causative gene SLC52A3 were found in 7 probands. More importantly, only 1 mutated allele was observed in several patients, and variable expressivity and incomplete penetrance were clearly noted. Environmental insults may contribute to variable presentations. Putative causative mutations in other genes were identified in 3 probands. Two of the genes, WDFY4 and TNFSF13B, have immune-related functions. Inflammatory responses were implicated in the patient with the WDFY4 mutation. Malfunction of the immune system and mitochondrial anomalies were shown in the patient with the TNFSF13B mutation. Prevalence of heterozygous SLC52A3 BVVL causative mutations and notable variability in expressivity of homozygous and heterozygous genotypes are being reported for the first time. Identification of WDFY4 and TNFSF13B as candidate causative genes supports conjectures on involvement of the immune system in BVVL and amyotrophic lateral sclerosis.


Assuntos
Fator Ativador de Células B/genética , Paralisia Bulbar Progressiva/genética , Estudos de Associação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Esclerose Lateral Amiotrófica/genética , Audiometria , Paralisia Bulbar Progressiva/diagnóstico , Paralisia Bulbar Progressiva/patologia , Feminino , Testes Genéticos , Humanos , Testes Imunológicos , Imageamento por Ressonância Magnética , Masculino , Músculos/patologia , Exame Neurológico
7.
Am J Med Genet C Semin Med Genet ; 184(3): 782-827, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32935930

RESUMO

Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.


Assuntos
Envelhecimento/genética , Glaucoma/genética , Nervo Óptico/metabolismo , Fatores de Transcrição/genética , Estudos de Associação Genética , Glaucoma/patologia , Humanos , Pressão Intraocular/genética , MicroRNAs/genética , Nervo Óptico/patologia , RNA Circular/genética , RNA Longo não Codificante/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
8.
Mol Genet Genomic Med ; 8(7): e1240, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32383541

RESUMO

BACKGROUND: SPG11 mutations can cause autosomal recessive hereditary spastic paraplegia (ARHSP) and juvenile amyotrophic lateral sclerosis (JALS). Because these diseases share some clinical presentations and both can be caused by SPG11 mutations, it was considered that definitive diagnosis may not be straight forward. METHODS: The DNAs of referred ARHSP and JALS patients were exome sequenced. Clinical data of patients with SPG11 mutations were gathered by interviews and neurological examinations including electrodiagnosis (EDX) and magnetic resonance imaging (MRI). RESULTS: Eight probands with SPG11 mutations were identified. Two mutations are novel. Among seven Iranian probands, six carried the p.Glu1026Argfs*4-causing mutation. All eight patients had features known to be present in both ARHSP and JALS. Additionally and surprisingly, presence of both thin corpus callosum (TCC) on MRI and motor neuronopathy were also observed in seven patients. These presentations are, respectively, key suggestive features of ARHSP and JALS. CONCLUSION: We suggest that rather than ARHSP or JALS, combined ARHSP/JALS is the appropriate description of seven patients studied. Criteria for ARHSP, JALS, and combined ARHSP/JALS designations among patients with SPG11 mutations are suggested. The importance of performing both EDX and MRI is emphasized. Initial screening for p.Glu1026Argfs*4 may facilitate SPG11 screenings in Iranian patients.


Assuntos
Mutação , Fenótipo , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Corpo Caloso/diagnóstico por imagem , Diagnóstico Diferencial , Eletrodiagnóstico , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Paraplegia Espástica Hereditária/diagnóstico
9.
Br J Ophthalmol ; 104(11): 1621-1628, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420327

RESUMO

BACKGROUND/AIMS: SLC4A11 is the only known causative gene of congenital hereditary endothelial dystrophy (CHED). Mutation screenings have shown that most but not all patients with CHED harbour mutations in SLC4A11, suggesting that other CHED-causing genes may exist. We aimed to screen SLC4A11 in Iranian patients to learn the mutation spectrum of this gene among Iranians and to gain further knowledge on potential contribution of other genes to CHED aetiology. METHODS: SLC4A11 was screened in 21 Iranian patients with CHED by sequencing. Previously unreported variations were checked in at least 200 controls, and segregation analysis within families and bioinformatics predictions on effects of variations were performed. Exome sequencing was done for the single patient without an SLC4A11 mutation and for her parents. RESULTS: Nine previously reported and 10 unreported SLC4A11 mutations were observed among 20 patients; a mutation was not found in one patient. A mutation in MPDZ was identified as the only candidate cause of CHED in this patient. Her mother who carried the same mutation was diagnosed with Fuchs endothelial corneal dystrophy (FECD). CONCLUSION: SLC4A11 mutations are the usual cause of CHED in Iranians. The 10 novel mutations observed contribute significantly to the approximately 85 mutations reported since discovery of the role of the gene in CHED pathogenesis more than 10 years ago. MPDZ mutations may be a cause of CHED and even FECD in a minority of patients. Proposed functions of MPDZ with respect to tight junctions and maintenance of the corneal endothelial barrier are in accordance with a role in corneal endothelial pathobiology.


Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Distrofias Hereditárias da Córnea/genética , Distrofia Endotelial de Fuchs/genética , Proteínas de Membrana/genética , Mutação , Polimorfismo de Nucleotídeo Único/genética , Códon sem Sentido/genética , Consanguinidade , Distrofias Hereditárias da Córnea/diagnóstico , Análise Mutacional de DNA , Exoma/genética , Feminino , Mutação da Fase de Leitura/genética , Distrofia Endotelial de Fuchs/diagnóstico , Humanos , Íntrons/genética , Irã (Geográfico) , Masculino , Mutação de Sentido Incorreto/genética , Linhagem
10.
Hum Mol Genet ; 28(21): 3637-3663, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518395

RESUMO

Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.


Assuntos
Glaucoma/genética , Adulto , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glaucoma/metabolismo , Glaucoma/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Estresse Oxidativo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Malha Trabecular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
11.
J Ophthalmic Vis Res ; 12(4): 407-412, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090051

RESUMO

PURPOSE: We aimed to assess whether the transcription factor PAX6 affects transcription of FMNL2. PAX6 is a transcription factor with significant roles in development of the eye and eye-related functions. FMNL2 encodes a member of the formin family of proteins and has roles in polymerization of actin and features of the cytoskeleton. The state of the cytoskeleton affects the flow of aqueous humor, disruption of which is a cornerstone of glaucoma pathology. METHODS: Initially, bioinformatics were used extensively to identify FMNL2 as an appropriate candidate gene for possible targeting by PAX6. Subsequently, direct targeting of the promoter of FMNL2 by PAX6 was tested using the dual luciferase assay. The experiment was performed by cloning a promoter region of FMNL2 that contains PAX6 binding sitesupstream of a firefly luciferase gene and comparison of expression of luciferase in the presence and absence of PAX6 expression vectors in the HEK293T cell line. The effect of PAX6 on endogenous expression of FMNL2 in primary trabecular meshwork (TM) cells was assessed by real-time polymerase chain reaction. RESULTS: Dual luciferase assays in HEK293T cells clearly demonstrated that PAX6 directly affects the FMNL2 promoter to increase expression of downstream sequences. However, overexpression of PAX6 in TM cells caused mild but statistically significant downregulation of endogenous FMNL2 as assessed by real-time polymerase chain reaction. CONCLUSION: It is concluded that PAX6 can indeed directly affect transcription of FMNL2. However, regulation of FMNL2 expression in TM cells is complicated and not limited to the direct effects of PAX6.

12.
Mol Cell Probes ; 34: 45-52, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28546132

RESUMO

Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor size of breast carcinoma through the regulation of LASP1. The tumor suppressive functions of miR-9 may be mediated partly by suppressing the expression of AR-an oncogene in breast cancer. Moreover, miR-96 may play an oncogenic role in breast cancer by suppressing the apoptosis through the regulation of ABCA1.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Apoptose/genética , Proteína BRCA1/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Transdução de Sinais/genética
13.
Gene ; 593(1): 76-83, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520585

RESUMO

The transcription factor PITX2 is implicated in glaucoma pathology. In an earlier study we had used microarray analysis to identify genes in the trabecular meshwork (TM) that are affected by knock down of PITX2. Here, those studies were pursued to identify genes that are direct targets of PITX2 and that may be relevant to glaucoma. Initially, bioinformatics tools were used to select among the genes that had been affected by PITX2 knock down those that have PITX2 binding sites and that may be involved in glaucoma related functions. Subsequently, the effect of PITX2 was tested using the dual luciferase assay in four cell cultures including two primary TM cultures co-transfected with vectors containing promoter fragments of six candidate genes upstream of a luciferase gene and a vector that expressed PITX2. Finally, the effect of PITX2 on endogenous expression of two genes was assessed by over expression and knock down of PITX2 in TM cells. Thirty four genes were found to contain PITX2 binding sites in their putative promoter regions, and 16 were found to be associated with TM-specific and/or glaucoma associated functions. Results of dual luciferase assays confirmed that two of six genes tested were directly targeted by PITX2. The two genes were CXCL6 (chemokine (C-X-C motif) ligand 6) and BBS5 (Bardet-Biedl syndrome 5). Over expression and knock down of PITX2 showed that this transcription factor affects endogenous expression of these two genes in TM cells. CXCL6 encodes a pro-inflammatory cytokine, and many studies have suggested that cytokines and other immune system functions are involved in glaucoma pathogenesis. BBS5 is a member of the BBS family of genes that affect ciliary functions, and ciliary bodies in the anterior chamber of the eye produce the aqueous fluid that affects intraocular pressure. Immune related functions and intraocular pressure are both important components of glaucoma pathology. The role of PITX2 in glaucoma may be mediated partly by regulating the expression of CXCL6 and BBS5 and thus affecting immune functions and intraocular pressure.


Assuntos
Câmara Anterior/metabolismo , Quimiocina CXCL6/biossíntese , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Glaucoma/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas/metabolismo , Elementos de Resposta , Fatores de Transcrição/metabolismo , Quimiocina CXCL6/genética , Cílios/genética , Cílios/metabolismo , Proteínas do Citoesqueleto , Proteínas do Olho/genética , Feminino , Glaucoma/genética , Glaucoma/patologia , Proteínas de Homeodomínio/genética , Humanos , Pressão Intraocular/genética , Masculino , Proteínas de Ligação a Fosfato , Proteínas/genética , Fatores de Transcrição/genética , Proteína Homeobox PITX2
14.
Iran J Basic Med Sci ; 18(2): 108-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25810883

RESUMO

OBJECTIVES: An earlier meta-analysis on gene expression data derived from four microarray, two cDNA library, and one SAGE experiment had identified RGS5 as one of only ten non-housekeeping genes that were reported to be expressed in human trabecular meshwork (TM) cells by all studies. RGS5 encodes regulator of G-protein signaling-5. The TM tissue is the route of aqueous fluid outflow, and is relevant to the pathology of glaucoma. MicroRNAs constitute the most recently identified components of the cellular machinery for gene regulation in eukaryotic cells. Given our long standing interest in glaucoma, we aimed to identify miRNAs that may target RGS5. MATERIALS AND METHODS: Eight miRNAs were selected for study using bioinformatics tools and available data on miRNAs expressed in the eye. Their effects were assessed using the dual luciferase assay. 3'-UTR segments of RGS5 mRNA were cloned downstream of a luciferase coding gene in psiCHECK2 vectors, and these were co-transfected with each of the miRNAs into HEK293 cells. RESULTS: The outcomes evidenced that one or more of the segments are in fact targeted by miR-7, miR-9, miR-96, miR-23a, miR-23b, miR-204, and miR-211. Down regulations by the miRNAs were statistically significant. The effect of miR-204 is considered particularly important as this miRNA is well known to regulate eye development and to affect multiple ocular functions. CONCLUSION: Our results justify further studies on regulation of RGS5 expression and RGS5 downstream functions by these miRNAs.

15.
J Neurol Sci ; 347(1-2): 305-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25455305

RESUMO

Intellectual disability like other common diseases is often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. We present diagnosis of cystathionine beta-synthase (CBS) deficiency in a multiply affected Iranian family with obvious intellectual disability based on whole genome SNP homozygosity mapping. Diagnosis based on clinical presentations had not been made because of unavailability of appropriate medical services. Genetic analysis led to identification of homozygous c.346G>A in CBS that causes p.Gly116Arg in the encoded protein, cystathionine beta-synthase. CBS is the most common causative gene of homocystinurea. Later, the same mutation was found in three other apparently unrelated Iranian homocystinuria patients. p.Gly116Arg was reported once before in a Turkish patient, suggesting it may be a common CBS deficiency causing mutation in the Middle East. Clinical features of the patients are reported that evidence to variable presentations caused by the same mutation. Finally, observations in heterozygous carriers of the mutation suggest data that a single allele of the p.Gly116Arg causing mutation may have phenotypic consequences, including cardiac related phenotypes. Our study attests to the powers of genetic analysis for diagnosis especially for some forms of intellectual disability, with known genetic causing agents.


Assuntos
Cistationina beta-Sintase/genética , Homocistinúria/complicações , Homocistinúria/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Feminino , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Mutação/genética , Polimorfismo de Nucleotídeo Único , Turquia , Adulto Jovem
16.
Exp Eye Res ; 111: 112-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541832

RESUMO

Forkhead box C1 (FOXC1) is a transcription factor that affects eye development. FOXC1 is implicated in the etiology of glaucoma because mutations in the gene are among the causes of Axenfeld-Rieger syndrome which is often accompanied by glaucoma. Glaucoma is the second leading cause of blindness. It is a complex disorder whose genetic basis in most patients remains unknown. Microarrays expression analysis was performed to identify genes in human trabecular meshwork (TM) primary cultures that are affected by FOXC1 and genes that may have roles in glaucoma. This represents the first genome wide analysis of FOXC1 target genes in any tissue. FOXC1 knock down by siRNAs affected the expression of 849 genes. Results on selected genes were confirmed by real time PCR, immunoblotting, and dual luciferase reporter assays. Observation of MEIS2 as a FOXC1 target and consideration of FOXC1 as a potential target of miR-204 prompted testing the effect of this micro RNA on expression of FOXC1 and several genes identified by array analysis as FOXC1 target genes. It was observed that miR-204 caused decreased expression of FOXC1 and the FOXC1 target genes CLOCK, PLEKHG5, ITGß1, and MEIS2 in the TM cultures. Expression of CLOCK, PLEKHG5, ITGß1 has not previously been reported to be affected by miR-204. The data suggest existence of a complex regulatory pathway in the TM part of which includes interactions between FOXC1, miR-204, MEIS2, and ITGß1. All these molecules are known to have TM relevant functions, and the TM is strongly implicated in the etiology of glaucoma.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Integrina beta1/metabolismo , MicroRNAs/metabolismo , Malha Trabecular/fisiologia , Fatores de Transcrição/metabolismo , Adulto , Idoso , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Homeodomínio/genética , Homeostase/genética , Homeostase/fisiologia , Humanos , Integrina beta1/genética , Luciferases/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Cultura Primária de Células , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Malha Trabecular/metabolismo , Fatores de Transcrição/genética
17.
Mol Vis ; 18: 241-54, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312193

RESUMO

PURPOSE: To identify non-housekeeping genes definitively expressed in the human trabecular meshwork (TM). METHODS: Microarray gene expression data on TM cultured cells from four studies were compared. Genes that were queried in at least three studies and assessed to be expressed in at least three studies were considered definitively expressed genes of the human TM. Housekeeping genes were removed from this set of genes. The non-housekeeping TM gene profile was analyzed for pathway enrichment and microRNA targeting, using bioinformatics tools. The results were compared with results of previous non-array based studies. RESULTS: Nine hundred and sixty-two genes were identified as non-housekeeping TM expressed genes. Analysis of these by Kyoto Encyclopedia of Genes and Genomes led to identification of two enriched biologic pathways that achieved a highly significant Bonferroni p-value (p≤0.01): focal adhesion and extracellular matrix (ECM)-receptor interaction. Many of the genes were previously implicated in TM-related functions and the TM-associated disease glaucoma; however, some are novel. MicroRNAs known to be expressed in the trabecular meshwork were predicted to target some of the genes. Ten genes identified here, ALDH1A1 (aldehyde dehydrogenase 1 family, member A1), CDH11 (cadherin 11, type 2, OB-cadherin), CXCR7 (chemokine (C-X-C motif) receptor 7), CHI3L1 (chitinase 3-like 1), FGF2 (fibroblast growth factor 2), GNG11 (guanine nucleotide binding protein [G protein], gamma 11), IGFBP5 (insulin-like growth factor binding protein 5), PTPRM (protein tyrosine phosphatase, receptor type, M), RGS5 (regulator of G-protein signaling 5), and TUSC3 (tumor suppressor candidate 3), were also reported as TM expressed genes in three earlier non-microarray based studies. CONCLUSIONS: A transcriptome consisting of 962 non-housekeeping genes definitively expressed in the human TM was identified. Multiple genes and microRNAs are proposed for further study for a better understanding of TM physiology.


Assuntos
Proteínas do Olho/genética , Genes Essenciais , MicroRNAs/genética , Malha Trabecular/metabolismo , Transcriptoma/genética , Técnicas de Cultura de Células , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Olho/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Malha Trabecular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...