Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 15(1): 144, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679776

RESUMO

BACKGROUND: First-degree relatives of type 2 diabetics (FDR) exhibit a high risk of developing type 2 diabetes (T2D) and feature subcutaneous adipocyte hypertrophy, independent of obesity. In FDR, adipose cell abnormalities contribute to early insulin-resistance and are determined by adipocyte precursor cells (APCs) early senescence and impaired recruitment into the adipogenic pathway. Epigenetic mechanisms signal adipocyte differentiation, leading us to hypothesize that abnormal epigenetic modifications cause adipocyte dysfunction and enhance T2D risk. To test this hypothesis, we examined the genome-wide histone profile in APCs from the subcutaneous adipose tissue of healthy FDR. RESULTS: Sequencing-data analysis revealed 2644 regions differentially enriched in lysine 4 tri-methylated H3-histone (H3K4me3) in FDR compared to controls (CTRL) with significant enrichment in mitochondrial-related genes. These included TFAM, which regulates mitochondrial DNA (mtDNA) content and stability. In FDR APCs, a significant reduction in H3K4me3 abundance at the TFAM promoter was accompanied by a reduction in TFAM mRNA and protein levels. FDR APCs also exhibited reduced mtDNA content and mitochondrial-genome transcription. In parallel, FDR APCs exhibited impaired differentiation and TFAM induction during adipogenesis. In CTRL APCs, TFAM-siRNA reduced mtDNA content, mitochondrial transcription and adipocyte differentiation in parallel with upregulation of the CDKN1A and ZMAT3 senescence genes. Furthermore, TFAM-siRNA significantly expanded hydrogen peroxide (H2O2)-induced senescence, while H2O2 did not affect TFAM expression. CONCLUSIONS: Histone modifications regulate APCs ability to differentiate in mature cells, at least in part by modulating TFAM expression and affecting mitochondrial function. Reduced H3K4me3 enrichment at the TFAM promoter renders human APCs senescent and dysfunctional, increasing T2D risk.


Assuntos
Diabetes Mellitus Tipo 2 , Histonas , Humanos , Histonas/genética , Diabetes Mellitus Tipo 2/genética , Peróxido de Hidrogênio , Metilação de DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas Mitocondriais/genética
2.
J Inherit Metab Dis ; 41(6): 985-995, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29435782

RESUMO

BACKGROUND: Glycogen storage disease type I (GSDI) is an inborn error of carbohydrate metabolism caused by mutations of either the G6PC gene (GSDIa) or the SLC37A4 gene (GSDIb). GSDIa patients are at higher risk of developing insulin-resistance (IR). Mitochondrial dysfunction has been implicated in the development of IR. Mitochondrial dysfunction can demonstrate abnormalities in plama acylcarnitines (ACs) and urine organic acids (UOA). The aim of the study was to investigate the presence of mitochondrial impairment in GSDI patients and its possible connection with IR. METHODS: Fourteen GSDIa, seven GSDIb patients, 28 and 14 age and sex-matched controls, were enrolled. Plasma ACs, UOA, and surrogate markers of IR (HOMA-IR, QUICKI, ISI, VAI) were measured. RESULTS: GSDIa patients showed higher short-chain ACs and long-chain ACs levels and increased urinary excretion of lactate, pyruvate, 2-ketoglutarate, 3-methylglutaconate, adipate, suberate, aconitate, ethylmalonate, fumarate, malate, sebacate, 4-octenedioate, 3OH-suberate, and 3-methylglutarate than controls (p < 0.05). GSDIb patients showed higher C0 and C4 levels and increased urinary excretion of lactate, 3-methylglutarate and suberate than controls (p < 0.05). In GSDIa patients C18 levels correlated with insulin serum levels, HOMA-IR, QUICKI, and ISI; long-chain ACs levels correlated with cholesterol, triglycerides, ALT serum levels, and VAI. DISCUSSION: Increased plasma ACs and abnormal UOA profile suggest mitochondrial impairment in GSDIa. Correlation data suggest a possible connection between mitochondrial impairment and IR. We hypothesized that mitochondrial overload might generate by-products potentially affecting the insulin signaling pathway, leading to IR. On the basis of the available data, the possible pathomechanism for IR in GSDIa is proposed.


Assuntos
Doença de Depósito de Glicogênio Tipo I/complicações , Resistência à Insulina , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/etiologia , Ácidos/urina , Adolescente , Adulto , Antiporters/genética , Biomarcadores/sangue , Carnitina/análogos & derivados , Carnitina/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Glucose-6-Fosfatase/genética , Humanos , Insulina/sangue , Modelos Lineares , Masculino , Proteínas de Transporte de Monossacarídeos/genética , Análise Multivariada , Urinálise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...