Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(10): e21905, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569672

RESUMO

The study was aimed at investigating the mechanisms and structures which determine mechanical properties of skeletal muscles under gravitational unloading and plantar mechanical stimulation (PMS). We hypothesized that PMS would increase NO production and prevent an unloading-induced reduction in skeletal muscle passive stiffness. Wistar rats were hindlimb suspended and subjected to a daily PMS and one group of stimulated animals was also treated with nitric oxide synthase (NOS) inhibitor (L-NAME). Animals received mechanical stimulation of the feet for 4 h a day throughout 7-day hindlimb suspension (HS) according to a scheme that mimics the normal walking of the animal. Seven-day HS led to a significant reduction in soleus muscle weight by 25%. However, PMS did not prevent the atrophic effect induced by HS. Gravitational unloading led to a significant decrease in maximum isometric force and passive stiffness by 38% and 31%, respectively. The use of PMS prevented a decrease in the maximum isometric strength of the soleus muscle. At the same time, the passive stiffness of the soleus in the PMS group significantly exceeded the control values by 40%. L-NAME (NOS inhibitor) administration attenuated the effect of PMS on passive stiffness and maximum force of the soleus muscle. The content of the studied cytoskeletal proteins (α-actinin-2, α-actinin-3, desmin, titin, nebulin) decreased after 7-day HS, but this decrease was successfully prevented by PMS in a NOS-dependent manner. We also observed significant decreases in mRNA expression levels of α-actinin-2, desmin, and titin after HS, which was prevented by PMS. The study also revealed a significant NOS-dependent effect of PMS on the content of collagen-1a, but not collagen-3a. Thus, PMS during mechanical unloading is able to maintain soleus muscle passive tension and force as well as mRNA transcription and protein contents of cytoskeletal proteins in a NOS-dependent manner.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Elevação dos Membros Posteriores , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar
2.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573052

RESUMO

It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the "switching-off" of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.


Assuntos
Pé/fisiologia , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Óxido Nítrico/metabolismo , Miosina não Muscular Tipo IIA/genética , Animais , Fenômenos Biomecânicos , Regulação para Baixo , Epigênese Genética , Elevação dos Membros Posteriores , Masculino , Ratos Wistar , Transdução de Sinais , Simulação de Ausência de Peso
3.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646070

RESUMO

Unloading leads to skeletal muscle atrophy via the upregulation of MuRF-1 and MAFbx E3-ligases expression. Reportedly, histone deacetylases (HDACs) 4 and 5 may regulate the expression of MuRF1 and MAFbx. To examine the HDAC-dependent mechanisms involved in the control of E3-ubiquitin ligases expression at the early stages of muscle unloading we used HDACs 4 and 5 inhibitor LMK-235 and HDAC 4 inhibitor Tasqinimod (Tq). Male Wistar rats were divided into four groups (eight rats per group): nontreated control (C), three days of unloading/hindlimb suspension (HS) and three days HS with HDACs inhibitor LMK-235 (HSLMK) or Tq (HSTq). Treatment with LMK-235 diminished unloading-induced of MAFbx, myogenin (MYOG), ubiquitin and calpain-1 mRNA expression (p < 0.05). Tq administration had no effect on the expression of E3-ligases. The mRNA expression of MuRF1 and MAFbx was significantly increased in both HS and HSTq groups (1.5 and 4.0 folds, respectively; p < 0.05) when compared with the C group. It is concluded that during three days of muscle unloading: (1) the HDACs 4 and 5 participate in the regulation of MAFbx expression as well as the expression of MYOG, ubiquitin and calpain-1; (2) the inhibition of HDAC 4 has no effect on MAFbx expression. Therefore, HDAC 5 is perhaps more important for the regulation of MAFbx expression than HDAC 4.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Calpaína/metabolismo , Elevação dos Membros Posteriores/fisiologia , Masculino , Atrofia Muscular/metabolismo , Miogenina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Ubiquitina/metabolismo
4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326654

RESUMO

To test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.3 ± 2.5 vs 83.0 ± 3 mg, respectively), whereas muscle weight in the HSVX group was maintained (84.2 ± 5 mg). The expression of muscle RING-finger protein-1 (MuRF1) mRNA was significantly increased in the HS group (165%), but not in the HSVX group (127%), when compared with the C group. The expression of muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx) mRNA was increased in both HS and HSVX groups (294% and 271%, respectively) when compared with C group. The expression of ubiquitin mRNA was significantly higher in the HS (423%) than in the C and HSVX (200%) groups. VX-745 treatment blocked unloading-induced upregulation of calpain-1 mRNA expression (HS: 120%; HSVX: 107%). These results indicate that p38α-MAPK signaling regulates MuRF1 but not MAFbx E3 ligase expression and inhibits skeletal muscle atrophy during early stages of unloading.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Piridazinas/administração & dosagem , Pirimidinas/administração & dosagem , Animais , Calpaína/genética , Calpaína/metabolismo , Elevação dos Membros Posteriores , Interleucina-6/metabolismo , Masculino , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteólise/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Front Physiol ; 10: 1252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611819

RESUMO

It is known that plantar mechanical stimulation (PMS) is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. However, molecular mechanisms underlying the effect of PMS on skeletal muscle during unloading remain undefined. The aim of the study was to evaluate the effects of PMS on anabolic and catabolic signaling pathways in rat soleus at the early stages of mechanical unloading. Wistar rats were randomly assigned to ambulatory control, hindlimb suspension (HS) for 1 or 3 days, and HS for 1 or 3 days with PMS. The key anabolic and catabolic markers were assessed by western blotting and RT-PCR. Protein synthesis (PS) rate was estimated using SUnSET technique. PMS attenuated a 1-day HS-induced decrease in 4E-BP1, GSK-3ß, and AMPK phosphorylation. PMS also partially prevented a decrease in PS, phosphorylation of GSK-3ß, nNOS, and an increase in eEF2 phosphorylation after 3-day HS. PMS during 1- and 3-day HS prevented MuRF-1, but not MAFbx, upregulation but did not affect markers of ribosome biogenesis (18S + 28S rRNA, c-myc) as well as AKT phosphorylation. Thus, PMS during 3-day HS partially prevented a decrease in the global rate of PS in rat soleus muscle, which was accompanied by attenuation of MuRF-1 mRNA expression as well as changes in GSK-3ß, nNOS, and eEF2 phosphorylation.

6.
Arch Biochem Biophys ; 674: 108105, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31518555

RESUMO

Currently, there is a lack of investigation into the initial signaling events underlying the development of disuse muscle atrophy. The study was aimed to (i) identify an assumed relationship between AMPK dephosphorylation and p70S6K hyperphosphorylation in the initial period of hindlimb unloading (HS), and (ii) assess the signaling consequences of p70S6K hyperphosphorylation following 24-h HS. For experiment 1, rats were treated with AMPK activator (AICAR) for 6 d before HS as well as during 24-h HS. For experiment 2, rats were treated with mTORC1 inhibitor rapamycin during 24-h HS. The key signaling markers implicated in protein turnover were assessed using WB and RT-PCR. One-day HS resulted in a significant upregulation of MuRF-1 and MAFbx expression, increase in p70S6K (Thr389) and IRS-1 (Ser639) phosphorylation and a significant decrease in phosphorylated AMPK, AKT, FOXO3, total IRS-1 content, and HDAC5 nuclear content. AMPK and p70S6K phosphorylation did not differ from control in AICAR-treated unloaded rats. Rapamycin treatment during unloading abolished p70S6K and E3 ligases upregulation and increased HDAC5 nuclear accumulation. The results of the study suggest that mTORC-1/p70S6K signaling pathway in rat soleus muscle is activated following 24-h mechanical unloading. This activation is facilitated by a decrease in AMPK phosphorylation. Increased p70S6K activity at the initial stage of hindlimb unloading could lead to the upregulation of E3 ligases MAFbx/atrogin-1 and MuRF-1 via nuclear export of HDAC5.


Assuntos
Músculo Esquelético/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Elevação dos Membros Posteriores , Histona Desacetilases/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Ratos Wistar , Ribonucleotídeos/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Sirolimo/farmacologia , Treonina/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
7.
Sci Rep ; 9(1): 10263, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311969

RESUMO

It is known that MuRF-1 and atrogin-1/MAFbx mRNA expression is increased in rat soleus muscle under unloading conditions. We aimed to determine the role of histone deacetylase 1 (HDAC1) in the activation of MuRF-1 and MAFbx expression in rat soleus muscle at the early stage of hindlimb suspension (HS). To this end, male Wistar rats (195-215 g) were divided into 3 groups (n = 8/group): control (C), 3-day HS (HS) and 3-day HS + HDAC1 inhibitor CI-994 (1 mg/kg/day) (HS + CI). Protein content and mRNA expression levels of regulatory molecules were determined by Western-blotting and RT-PCR. CI-994 treatment prevented HS-induced increase in HDAC1 nuclear content. As expected, 3-day HS induced a significant upregulation in MAFbx, MuRF-1 and ubiquitin. CI-994 administration resulted in an attenuation of HS-mediated increase in MAFbx and ubiquitin expression levels but did not affect MuRF-1 expression. A decrease in histone acetyltransferase p300 nuclear content in the HS group was prevented by CI-994 administration. There were no significant differences in the content of phosphorylated anabolic signaling molecules between HS group and HS + CI group. Thus, inhibition of HDAC1 prevented a HS-mediated increase in MAFbx and ubiquitin expression, but did not affect MuRF-1 gene expression.


Assuntos
Membro Posterior/fisiologia , Histona Desacetilase 1/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Proteínas Ligases SKP Culina F-Box/genética , Animais , Peso Corporal , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Elevação dos Membros Posteriores/fisiologia , Histona Desacetilase 1/genética , Masculino , Fosforilação , RNA Mensageiro , Ratos Wistar , Proteínas com Motivo Tripartido/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
8.
J Physiol ; 595(23): 7123-7134, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28975644

RESUMO

KEY POINTS: Inactivation of a skeletal muscle results in slow to fast myosin heavy chain (MyHC) shift. AMP-activated protein kinase (AMPK) can be implicated in the regulation of genes encoding the slow MyHC isoform. Here we report that AMPK dephosphorylation after 24 h of mechanical unloading can contribute to histone deacetylase (HDAC) nuclear translocation; activation of AMPK prevents HDAC4 nuclear accumulation after 24 h of unloading and AMPK dephosphorylation inhibits slow MyHC expression following 24 h of unloading. Our data indicate that AMPK dephosphorylation during the first 24 h of mechanical unloading has a significant impact on the expression of MyHC isoforms in rat soleus causing a decrease in MyHC I(ß) pre-mRNA and mRNA expression as well as MyHC IIa mRNA expression. ABSTRACT: One of the key events that occurs during skeletal muscle inactivation is a change in myosin phenotype, i.e. increased expression of fast isoforms and decreased expression of the slow isoform of myosin heavy chain (MyHC). It is known that calcineurin/nuclear factor of activated T-cells and AMP-activated protein kinase (AMPK) can regulate the expression of genes encoding MyHC slow isoform. Earlier, we found a significant decrease in phosphorylated AMPK in rat soleus after 24 h of hindlimb unloading (HU). We hypothesized that a decrease in AMPK phosphorylation and subsequent histone deacetylase (HDAC) nuclear translocation can be one of the triggering events leading to a reduced expression of slow MyHC. To test this hypothesis, Wistar rats were treated with AMPK activator (AICAR) for 6 days before HU as well as during 24 h of HU. We discovered that AICAR treatment prevented a decrease in pre-mRNA and mRNA expression of MyHC I as well as MyHC IIa mRNA expression. Twenty-four hours of hindlimb suspension resulted in HDAC4 accumulation in the nuclei of rat soleus but AICAR pretreatment prevented this accumulation. The results of the study indicate that AMPK dephosphorylation after 24 h of HU had a significant impact on the MyHC I and MyHC IIa mRNA expression in rat soleus. AMPK dephosphorylation also contributed to HDAC4 translocation to the nuclei of soleus muscle fibres, suggesting an important role of HDAC4 as an epigenetic regulator in the process of myosin phenotype transformation.


Assuntos
Elevação dos Membros Posteriores/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Quinases Proteína-Quinases Ativadas por AMP , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Histona Desacetilases/metabolismo , Masculino , Cadeias Pesadas de Miosina/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...