Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37929867

RESUMO

In this work we implement a new methodology to study structural and mechanical properties of systems having spherical and planar symmetries throughout Molecular Dynamics simulations. This methodology is applied here to a drug delivery system based in polymersomes, as an example. The chosen model drug was the local anesthetic prilocaine due to previous parameterization within the used coarse grain scheme. In our approach, mass density profiles (MDPs) are used to obtain key structural parameters of the systems, and pressure profiles are used to estimate the curvature elastic parameters. The calculation of pressure profiles and radial MPDs required the development of specific methods, which were implemented in an in-house built version of the GROMACS 2018 code. The methodology presented in this work is applied to characterize poly(ethylene oxide)-poly(butadiene) polymersomes and bilayers loaded with the model drug prilocaine. Our results show that structural properties of the polymersome membrane could be obtained from bilayer simulations, with significantly lower computational cost compared to whole polymersome simulations, but the bilayer simulations are insufficient to get insights on their mechanical aspects, since the elastic parameters are canceled out for the complete bilayer (as consequence of the symmetry). The simulations of entire polymersomes, although more complex, offer a complementary approach to get insights on the mechanical behavior of the systems.


Assuntos
Simulação de Dinâmica Molecular , Polietilenoglicóis , Preparações Farmacêuticas , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Prilocaína
2.
J Chem Phys ; 148(21): 214901, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884038

RESUMO

In this work, we present results of coarse-grained simulations to study the encapsulation of prilocaine (PLC), both neutral and protonated, on copolymer bilayers through molecular dynamics simulations. Using a previously validated membrane model, we have simulated loaded bilayers at different drug concentrations and at low (protonated PLC) and high (neutral PLC) pH levels. We have characterized key structural parameters of the loaded bilayers in order to understand the effects of encapsulation of PLC on the bilayer structure and mechanical properties. Neutral PLC was encapsulated in the hydrophobic region leading to a thickness increase, while the protonated species partitioned between the water phase and the poly(ethylene oxide)-poly(butadiene) (PBD) interface, relaxing the PBD region and leading to a decrease in the thickness. The tangential pressures of the studied systems were calculated, and their components were decomposed in order to gain insights on their compensation. In all cases, it is observed that the loading of the membrane does not significantly decrease the stability of the bilayer, indicating that the system could be used for drug delivery.

3.
J Chem Phys ; 146(24): 244904, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668049

RESUMO

This paper presents a new model for polymersomes developed using a poly(ethylene oxide)-poly(butadiene) diblock copolymer bilayer. The model is based on a coarse-grained approach using the MARTINI force field. Since no MARTINI parameters exist for poly(butadiene), we have refined these parameters using quantum mechanical calculations and molecular dynamics simulations. The model has been validated using extensive molecular dynamics simulations in systems with several hundred polymer units and reaching up to 6 µs. These simulations show that the copolymer coarse grain model self-assemble into bilayers and that NPT and NPNγT ensemble runs reproduce key structural and mechanical experimental properties for different copolymer length chains with a similar hydrophilic weight fraction.

4.
J Chem Theory Comput ; 10(3): 959-67, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26580175

RESUMO

The hybrid simulation tools (QM/MM) evolved into a fundamental methodology for studying chemical reactivity in complex environments. This paper presents an implementation of electronic structure calculations based on density functional theory. This development is optimized for performing hybrid molecular dynamics simulations by making use of graphic processors (GPU) for the most computationally demanding parts (exchange-correlation terms). The proposed implementation is able to take advantage of modern GPUs achieving acceleration in relevant portions between 20 to 30 times faster than the CPU version. The presented code was extensively tested, both in terms of numerical quality and performance over systems of different size and composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...