Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403120

RESUMO

The selective removal of pollutants from water bodies is regarded as a conciliation between the rapid expansion of industrial activities and need of clean water for sustainability. Fluoride is one such geogenic pollutant, and various materials have already been reported. Developing an efficient field employable material is however a challenge. Herein, we report the synthesis and competencies of strategically designed magnetic La-doped Al2O3 core-shell nanoparticle loaded polymeric nanohybrid as a benchmark fluoride sorbent. A facile synthesis strategy involved fabrication of Fe3O4 magnetic core followed by growth of La doped Al2O3 shell using sol-gel method. Doping of La2O3 into Al2O3 structure was optimised (6%), resulting in Fe3O4-Al0.94 La0.06O1.5 core-shell particles which provided exceptional fluoride affinity. The obtained magnetic Fe3O4-Al0.94La0.06O1.5 core-shell nanoparticles were then loaded (22%) into alginate to form cross-linked hydrogel beads (Fe3O4-Al0.94 La0.06 O1.5-Ca-ALG). These prepared hydrogel beads were characterised and utilized for selective recovery of fluoride under different ambient conditions. Driving forces for enhanced fluoride uptake by La doped Al2O3 were investigated and explained with the help of both experimental observation and theoretical simulation. Density functional theory calculations indicated significant expansion in the cell volume of Al2O3 due to La doping which favoured the fluoride sorption. The calculated defect formation energy for the incorporation of F into Al2O3 was found to decrease in the presence of La. XPS analysis suggested direct interaction of fluoride with Al, forming Al-F bond and breaking Al-O bond. Different vital parameters for uptake were optimised. Also, kinetics, isotherm and diffusion models were evaluated. Developed hydrogel beads attained record sorption capacity of 132.3 mgg-1 for fluoride. Overall, excellent stability, no leaching of constituents, effectiveness for selective fluoride recovery from groundwater, brand it a perfect epitome of sustainable water treatment application.


Assuntos
Fluoretos , Nanopartículas , Hidrogéis/química , Adsorção , Fenômenos Magnéticos , Cinética
2.
Inorg Chem ; 62(49): 20258-20270, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38033302

RESUMO

Herein, we report the uranyl sensitization of Sm3+ emissions in uranium-codoped Li2B4O7:Sm3+ phosphor. The uranyl speciation in codoped [Sm, U] LTB samples was determined by synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy that revealed two coordination shells for U(VI) ions with bond distances of U-Oax (∼1.81 Å) and U-Oeq (∼2.30 Å). EXAFS fitting suggested that the uranyl moiety is present as pentagonal bipyramids (UO7) and hexagonal bipyramids (UO8) with five and six equatorial oxygen ligands, respectively. The alteration of the local structure of Sm3+ from [SmO4] to [SmO7] polyhedra and the changes in the coordination number of equatorial oxygen for uranyl were observed with different codoping concentrations of Sm3+ and uranium. Density functional theory (DFT) calculations suggested the lowering of defect formation energy for Li vacancies on codoping of Sm and U. Hence, we proposed the increase of the equatorial coordination number of UO22+ on the increase in the lithium vacancies in LTB. In addition, DFT supported the feasibility of efficient energy transfer (ET) due to the overlap of uranium and Sm3+ excited state levels. The influence of the same on the spectral features and UO22+ → Sm3+ energy transfer was investigated by time-resolved photoluminescence (PL) studies. The ET efficiency from the UO22+ to Sm3+ was 70.5% in 0.5 mol % codoped [Sm, U] LTB samples. The correlation of EXAFS and luminescence properties indicated a red shift in vibronic features of uranyl emission with increase in the equatorial coordination of the uranyl moiety from five to six. Additionally, a higher probability of ET was observed for uranyl speciation as UO8 hexagonal bipyramids. Temperature-dependent emissions and decay profiles were collected under uranyl excitation to investigate the thermal dependence of ET. A high energy barrier (Ea ∼ 4027 cm-1) was evaluated for the thermal quenching of Sm3+ emissions. This work provides insights into the modulation of luminescence and ET efficiency via structural changes in uranyl and Sm local environment in LTB phosphor.

3.
Phys Chem Chem Phys ; 25(43): 29968-29981, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37902924

RESUMO

Design of optoelectronic materials with tunable properties using activators and defect clusters has become one of the prime interests of current research. In this study, detailed Density Functional Theory based calculations have been presented to investigate the geometries and electronic structures of various possible defect clusters using Eu-KMgF3 as a probe which has numerous technological and industrial applications. Using a more reliable hybrid density functional, we have calculated defect formation energies and thermodynamic transition levels to get knowledge about the site selectivity of Eu. It has been observed that the electronic structure of Eu-KMgF3 is not only dependent on the site of doping but also on the oxidation state of Eu (2+/3+). The present study also investigates the relative stability of different kinds of defects and defect clusters under various synthetic growth conditions. The ultimate aim is to find out the microscopic origin of the fundamental optical properties of Eu-KMgF3 and provide an unambiguous explanation of available experimental results. Thus, it has been revealed that doping with Eu results in the spontaneous formation of intrinsic defects, which contribute to the observed optical behaviour. We have also extended our study to investigate the role of codoping with Li in determining the geometry and electronic structure of Eu-KMgF3 aiming to explain its impact on the optical properties. Thus, a complete presentation of the influence of the activator in the absence and presence of lattice defects on the optical properties of KMgF3 has been accomplished in the current study. We strongly believe that the present study will be helpful in designing tunable phosphor materials by a defect-controlled synthesis strategy.

4.
Phys Chem Chem Phys ; 25(32): 21479-21491, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539659

RESUMO

In recent times, ultra-thin films of hafnium oxide (HfO2) have shown ferroelectricity (FE) attributed to the orthorhombic (o) phase of HfO2 with space group Pca21. This polar o-phase could be stabilized in the doped thin film of the oxide. In the present work, both polar and non-polar o-phases of HfO2 could be stabilized in Gd-doped bulk polycrystalline HfO2. Rietveld analysis of XRD data shows that the relative population of o-phases in the presence of the monoclinic (m) phase of HfO2 increases with increasing Gd-content. The local environment around the host atom has been investigated by time differential perturbed angular correlation (TDPAC) spectroscopy, synchrotron based X-ray near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) measurements showed a reduction in grain size with increasing Gd-dopant indicating a solute drag effect. It could be established that the segregation of the Gd-dopant in the grain boundary is a thermodynamically favorable process and the solute drag effect plays an important role in nucleation of the o-phase in bulk HfO2. Stabilization of Gd in both Pbca and Pca21 phases of HfO2 was supported by defect formation energy calculations using density functional theory (DFT). The present study has important implications in future applications of HfO2 in ferroelectric devices and in understanding the role of dopants in stabilizing the o-phase of HfO2 in the bulk.

5.
Phys Chem Chem Phys ; 25(3): 1889-1902, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36541249

RESUMO

Owing to the unique 4f-5d transitions and the involvement of 5d electrons, the divalent europium (Eu2+) ion is extensively used as a dopant ion in luminescent materials for phosphor-converted light emitting diodes (pc-LEDs) and other technological applications. Earlier reports in most of the cases have shown that the reduction of Eu3+ to Eu2+ requires very high temperatures and large hydrogen flux. In this study, a co-doping strategy with higher valent U6+ ions was utilized to successfully stabilize Eu2+ ions in the Li2B4O7 (LTB) host with both the BO3 and BO4 network in low H2 flux of only 8%. It is postulated that charge transfer occurs from U to Eu, resulting in the reduction of the charged state of Eu and the reaction probably proceeds via the formation of paramagnetic transient [U5+-Eu3+] species in the co-doped LTB. The same is also believed to be facilitated by the enhanced formation of Li-O type vacancy clusters in co-doped samples and enhanced oxygen vacancies in a reducing atmosphere. We believe this work will pave a new pathway for stabilizing the unusual oxidation state of lanthanides and transition metal ions through co-doping with hexavalent uranium ions.

6.
Phys Chem Chem Phys ; 24(38): 23790-23801, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36156002

RESUMO

Materials that can depict persistent deep red light under both ultraviolet (UV) and X-ray illumination can be a boon to sustainable economy, particularly for optical imaging, solid state lighting, and anticounterfeiting applications. Herein, we have made a series of compounds starting from ZnGa2O4:Cr3+ to ZnAl2O4:Cr3+ (individual spinel) by substituting the varied concentration of Al3+ in place of Ga3+ in ZnGa2-xAlxO4:Cr3+ (solid solution). By virtue of the structural and defect engineering doping strategy, the photo and radioluminescence are expected to be improved. Both Cr and Al doping was found to be energetically favorable in ZnGa2O4, where the same does not hold true for Ga doping in ZnAl2O4, as indicated by the DFT-calculated defect formation energies. There seems to be ordering around the dopant ion in the solid solutions compared to either ZnGa2O4 or ZnAl2O4 and is also reflected to as lower persistent luminescence (PerL) lifetimes. PerL under UV, in general. was found to be lower with the enhancement in the Al3+ content endowed by the formation of Cr-Cr ion pair, lower probability of antisite formation, and widening band gap. On the other hand, X-ray excited emission enhances in the solid solution due to the decrease in cation inversion and associated defects. Confocal Microscopy showed that larger particles depicted much brighter deep red emission but failed to percolate to the human cells to a detectable limit; hence, future work is needed for the functionalization of the ZnGa2-xAlxO4:Cr3+ spinel. This work could be of great implication in designing need-based materials, where UV and X-ray excitation is required, for deep red emission with persistent characteristics from chromium-doped spinels.

7.
ACS Omega ; 7(6): 5311-5323, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187346

RESUMO

Materials with optical multifunctionality such as photoluminescence (PL), radioluminescence, and thermoluminescence (TL) are a boon for a sustainable society. BaHfO3 (barium hafnium oxide [BHO]) under UV irradiation demonstrated visible PL endowed by oxygen vacancies (OVs). Eu3+ doping in BHO (BHOE) introduces f-state impurity levels just below the conduction band for both Eu@Ba and Eu@Hf sites, causing efficient host-to-dopant energy transfer, generating intense 5D0 → 7F1 magnetic dipole transitions (MDT) with internal quantum yield of ∼70%. X-ray photoelectron spectroscopy and electron paramagnetic resonance showed the formation of OVs in both BHO and BHOE samples with more vacancies in the doped sample. The positron lifetime measurements suggested that Eu3+ ions are distributed at both Ba2+ and Hf4+ sites. The association of OVs with Hf4+ and Eu3+ ions due to high charge/radius ratio is considered to be responsible for lowering the symmetry around Eu3+ ions to C 4v in BHOE. Density functional theory studies of defect formation energy justified the same. Time-resolved emission spectroscopy showed distinct spectra for Eu@Ba and Eu@Hf sites corresponding to symmetric and asymmetric environments, respectively. This could be highly relevant in designing color tunable phosphor by forcing dopant ions at one specific site because Eu@Ba displayed orange emission whereas Eu@Hf displayed red emission. We could further harness BHOE for X-ray scintillator application by designing a thin film, which showed efficient conversion of high-energy X-ray into visible light. Under beta irradiation; both BHO and BHOE showed distinct TL glow curves as shallow traps were formed in the former and deep traps in the latter, which could have long-term implications in harnessing this material for persistent luminescence. We believe that BHO/BHOE demonstrated an extraordinary credential as a perovskite for multifunctional applications in the area of defect-induced light emission, UV phosphor, X-ray scintillator, and TL crystals.

8.
J Hazard Mater ; 423(Pt A): 126980, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482073

RESUMO

A combined photoluminescence (PL) and theoretical study has been performed on Ca10(PO4)6F2:U6+ and Ca10(PO4)6F2:U6+,Eu3+ compounds in order to explore Ca10(PO4)6F2 as potential host for radioactive waste immobilization by understanding the distribution U6+, Eu3+ and Am3+ ions among the lattice sites and the related radiation stability. DFT based calculations on various structures with different distribution of U6+, Eu3+ and Am3+ ions showed that Eu3+ and Am3+ ions prefer to occupy the Ca2 sites while the highly charged U6+ ions prefer Ca1 site. This is also supported by the PL lifetime study, which provided two lifetime components with different contribution for both U6+ and Eu3+ ions present at two different lattice sites. The PL study of U6+ doped compounds confirmed the existence of U in the UO22+ form, which makes it as a pure green emitter. Upon co-doping Eu3+ ion, the compounds were transformed to red emitter. Further, there is an energy transfer process from U6+to Eu3+, which shifted the CIE color coordinates towards pure red region while increasing doping level of U6+. This proves U6+ as a good sensitizer for Eu3+ ion. PL study on gamma irradiated U6+ doped Ca10(PO4)6F2 compound also showed excellent radiation stability at Ca2 site.


Assuntos
Európio , Resíduos Radioativos , Transferência de Energia , Íons , Luminescência
9.
Langmuir ; 37(16): 4847-4858, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844924

RESUMO

To replace Pt-based compounds in the electrocatalytic hydrogen evolution reaction (HER), MoS2 has already been established as an efficient catalyst. The electrocatalytic activity of MoS2 is further improved by tuning the morphology and the electronic structure through doping, which helps the band energy position to be modified. Presently, thin sheets of MoS2 (MoS2-TSs) are synthesized via a microwave technique. Thin sheets of MoS2 can outperform nanosheets of MoS2 in the HER. Further, the efficiency of the thin sheets is improved by doping with different metals like Cu, V, Zn, Mn, Fe, Sn, etc. "Cu"- and "V"-doped MoS2-TSs are highly efficient for the HER. At a fixed potential of -0.588 V vs RHE, Cu-doped MoS2 (Cu-MoS2-TS), V-doped MoS2 (V-MoS2-TS), and MoS2-TS can generate current densities of 327.46, 308.45, and 127.82 mA/cm2, respectively. The electrochemically active surface area increases nearly 7.7-fold and 2.5-fold for Cu-MoS2-TS and V-MoS2-TS than for MoS2-TS, respectively. Cu-MoS2-TS shows exceptionally high electrocatalytic stability up to 140 h in an acidic medium (0.5 M H2SO4). First-principles calculations using density functional theory (DFT) are performed, which are well matched with the experimental observations. DFT calculations dictate that after doping with "V" and "Cu" both valance band maxima and conduction band minima are uplifted, which indicates the higher hydrogen-ion-reducing ability of M-MoS2-TS (M = Cu, V) compared to bare MoS2-TS.

10.
J Hazard Mater ; 411: 125025, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33453665

RESUMO

Na+2Eu3+2:Ca6(PO4)6F2 is explored as a potential host for radioactive waste immobilization. Since Eu3+ ion is a surrogate of highly radioactive Am3+ ion, the photoluminescence (PL) characteristics of Eu3+ ion helped to investigate the possible distribution of hazardous and radioactive Am3+ ion among the two lattice sites in the matrix. It was observed that Am3+ will prefer to occupy the Ca2-site lattice which has a direct linkage to F atom. From DFT calculation we have found that both Eu3+ and Am3+ ions are following similar trend of distribution into the Ca2-site compared to Ca1-site which has no F atom linkage. The radiation stability of the compound was also investigated by PL study after irradiating it with a 60Co gamma source with different doses starting from 2 kGy to as high as 1000 kGy. It was observed that radiation induced changes were more surrounding the Ca1-site than in Ca2-site.Considering all the experimental and theoretical observations it is concluded that from radioactive waste immobilization point of view it is more preferable to dope the Am3+ ion into the Ca2 site. The Eu3+ doped compound was also found to be red color emitting phosphor materials with color purity of 95.24%.

11.
RSC Adv ; 11(50): 31421-31432, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496828

RESUMO

In this study we have explored Ca10(PO4)6F2 as host to develop a variety of phosphor materials with tunable emission and lifetime characteristics based on Eu3+ and Tb3+ as co-dopant ions and the energy transfer process involved with them. The energy transfer from the excited state of Tb3+ ion to the 5D0 state of Eu3+ makes it possible to tune the colour characteristics from yellow to orange to red. Further, such energy transfer process is highly dependent on the concentration of Eu3+ and Tb3+ ions and their site-selective distribution among the two different Ca-sites (CaO9 and CaO6F) available. We have carried out DFT based theoretical calculation for both Eu3+ and Tb3+ ions in order to understand their distribution. It was observed that in cases of co-doped sample, Tb3+ ions prefer to occupy the Ca2 site in the CaO6F network while Eu3+ ions prefer Ca1 site in the CaO9 network. This distribution has significant impact on the lifetime values and the energy transfer process as observed in the experimental photoluminescence lifetime values. We have observed that for the 1st series of compounds, wherein the concentration Tb3+ ions are fixed, the energy transfer from Tb3+ ion at Ca2 site to Eu3+ ion at Ca1 site is dominating (Tb3+@Ca2 → Eu3+@Ca1). However, for the 2nd series of compounds, wherein the concentration Eu3+ ions are fixed, the energy transfer process was found to occur from the excited Tb3+ ion at Ca1 site to Eu3+ ions at both Ca1 and Ca2 (Tb3+@Ca1 → Eu3+@Ca1 and Tb3+@Ca1 → Eu3+@Ca2). This is the first reports of its kind on site-specific energy transfer driven colour tunable emission characteristics in Eu3+ and Tb3+ co-doped Ca10(PO4)6F2 phosphor and it will pave the way for the future development of effective colour tunable phosphor materials based on a single host and same co-dopant ions.

12.
Phys Chem Chem Phys ; 22(28): 16244-16257, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32643738

RESUMO

Linearity in dose response up to very high radiation doses and sufficient sensitivity to even low radiation doses are extremely important for the measurement of radiation dose in the field of radiation technology, ranging from medical to industrial applications. Olivine type LiMgPO4 has been shown immense interest as a phosphor material in the fields of thermoluminescence and optically stimulated luminescence dosimetry. In the present study, we have explored the role of different vacancy defects in the optical properties of LiMgPO4 aiming at enhancing its sensitivity for the measurement of radiation dose. For this purpose, we have systematically investigated the electronic structure of LiMgPO4 in the absence and presence of various vacancy defects using density functional theory as a tool. The present study considers all possible vacancy defects including neutral, charged and mixed lattice vacancy defects in LiMgPO4. To find the most energetically favourable vacancy defect, we have compared the defect formation energy of all the vacancy defects. We have also calculated vacancy formation energy in different chemical environments to investigate how the formation of different types of vacancy defect can be controlled by tuning the chemical environment. Finally, the origin of the different optical properties of LiMgPO4 has been explained by using a possible mechanism based on our detailed electronic structure calculations. Thus, the present study is believed to provide valuable insight for the development of materials with improved features for the measurement of radiation dose.

13.
Phys Chem Chem Phys ; 20(30): 20078-20087, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024002

RESUMO

Increasing applications of SrTiO3 as a photocatalyst in recent times drive the development of various strategies through doping with foreign elements to improve its efficiency under sunlight. Motivated by the recent experimental observation of increased lifetime of photogenerated charge carriers due to codoping of Ta into Ni-doped SrTiO3 (R. Niishiro et al., Phys. Chem. Chem. Phys., 2005, 7, 2241-2245, and A. Yamakata et al., J. Phys. Chem. C, 2016, 120, 7997-8004), we systematically investigate the detailed electronic structure of Ni-doped SrTiO3 in the presence and absence of Ta. The present theoretical study reveals that Ni-doping reduces the effective band gap by introducing unoccupied Ni-3d states in the forbidden region, while addition of Ta passivates these states. Here, we have properly explained the fact that improved photoconversion efficiency can be achieved only when the proportion of Ta is double with respect to that of Ni. The defect formation energy for the 1 : 2 type (Ni, Ta)-codoped SrTiO3 is energetically more favourable than that of the 1 : 1 type variety. The present study also explored the possibility of using V, Nb, and Sb in place of Ta to aim at better utilization of visible light activity. Interestingly, we arrive at a conclusion that V and Nb may be better choices over experimentally reported Ta for achieving enhanced photocatalytic activity of Ni-doped SrTiO3 under visible light. Finally, applicability of all these codoped systems for the generation of hydrogen and oxygen through water splitting has been checked by inspecting their band edge levels with respect to water redox levels.

14.
Phys Chem Chem Phys ; 18(38): 26466-26474, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711379

RESUMO

Graphitic carbon nitride based semiconductor materials are found to be potential photocatalysts for generating hydrogen through solar water splitting. Through more accurate hybrid density functional theory calculations, we attempted to tune the electronic band structure of poly s-triazine based graphitic carbon nitride by decorating it with different metal atoms and clusters for improving its visible light absorption efficiency. For deposition on the two-dimensional carbon nitride surface, a range of metals have been considered which include all the 3d transition metals and the noble metals (Ag, Au, Pt and Pd). Our study reveals that though the band gaps of all the metal decorated systems were less than that of pristine carbon nitride, in most of the cases, metal decoration leads to the formation of mid gap impurity states, which can hinder the mobility of charge carriers. However, in the case of Ag and its four atom cluster deposited systems, no mid gap states were observed. In all the metal decorated systems, the measured band edge potentials were also found to satisfy the thermodynamic criterion for overall water splitting. The calculated optical absorption spectra show a shift in the absorption band towards the visible region upon metal decoration. Our results indicate that among all the considered metal atoms silver is the preferred candidate for deposition on the carbon nitride surface for improved photocatalytic activity.

15.
J Phys Chem B ; 119(34): 11089-98, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26125518

RESUMO

In this theoretical study, we investigate recent observation of enhancement of hydrogen evolution efficiency of Rh-doped SrTiO3 due to codoping with La at the Sr lattice site. Using hybrid density functional theory, we have systematically studied the electronic structure of (Rh, La)-codoped SrTiO3 and compared with that of Rh-doped SrTiO3, La-doped SrTiO3, and undoped SrTiO3. The aim of the present study has been to explore the role of different factors toward the observed enhanced photoactivity of (Rh, La)-codoped SrTiO3. Doping with only Rh significantly reduces the photoabsorption energy by introducing localized acceptor states between the valence band and conduction band. Unfortunately, these states act as efficient sources for charge carrier trapping. Besides, the oxygen vacancy found to be present in the Rh-doped SrTiO3 as a charge compensating defect also accelerates the electron-hole recombination rate. We have shown that codoping with La and Rh leads to the formation of clean band structure without encountering any midgap states. Introduction of La into the Rh-doped SrTiO3 not only reduces the quantity of Rh(4+) species but also suppresses the oxygen vacancy due to formation of a charge-compensated system. The presence of La favors Rh doping into the crystal structure of SrTiO3 by reducing the formation energy. Moreover, the conduction band minima are found to be shifted in the upward direction significantly due to codoping with Rh and La, thereby increasing the reducing behavior at the conduction band. This leads to enhancement of hydrogen evolution activity of SrTiO3 during photocatalytic water splitting under visible light.

16.
Phys Chem Chem Phys ; 17(23): 15274-83, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25992916

RESUMO

A systematic calculation, using hybrid density functional theory, has been carried out to investigate the origin of the enhancement of photo-conversion efficiency of Rh-doped SrTiO3 with codoping of Sb. In the case of Rh-doped SrTiO3, partially unoccupied states are introduced above the valence band, thus lowering the hole oxidation at the valence band (VB) drastically, which explains the poor oxygen evolution activity of Rh-doped SrTiO3. We show that the partially occupied t2g subset of the Rh 4d orbital is completely filled in the presence of Sb due to the transfer of the extra electron to the Rh center. As a result, acceptor states are completely passivated in the case of (Rh, Sb)-codoped SrTiO3 and a continuous band structure with reduced band gap is formed, which is responsible for the observed enhanced photocatalytic activity of (Rh, Sb)-codoped SrTiO3. We have shown that the relative positions of the band edges of (Rh, Sb)-codoped SrTiO3 with respect to the water redox levels are in favor of the spontaneous release of both hydrogen and oxygen during water splitting, which is consistent with the experimental observation. We have also studied the effect of codoping in different proportions (1 : 2 and 2 : 1) of Rh and Sb. Although 1 : 2 (Rh, Sb)-codoping leads to the formation of a clean band structure with the reduction of the band gap by a larger extent, it shows lower photo-conversion efficiency due to its charge non-compensated nature. In addition, the presence of acceptor states above the VB limits the oxygen evolution efficiency of 2 : 1 (Rh, Sb)-codoped SrTiO3. Thus, the present approach successfully reproduces the experimental features of the Rh-monodoped as well as (Rh, Sb)-codoped SrTiO3 and also explains their origin.

17.
Phys Chem Chem Phys ; 16(44): 24527-35, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25310754

RESUMO

In this study, the effect of cation (Mo or W) and anion (N) codoping on the band structure of SrTiO3 is investigated to improve its photocatalytic activity for water splitting under sunlight. We consider both the non-compensated and compensated codoping strategies using different ratios of the cationic and anionic dopants. The present study employs hybrid density functional theory to describe the electronic structure of all the systems accurately. Although non-compensated (1 : 1) codoping reduces the band gap significantly, the presence of localized impurity states may hinder charge carrier mobility. This also changes the positions of the band edges to such an extent that the (Mo/W, N)-codoped SrTiO3 system becomes ineffective for overall water splitting. Besides, the formation of charge compensating defects may contribute to the carrier loss. On the other hand, compensated (1 : 2) codoping not only reduces the band gap to shift the absorption curve towards the visible region, but also passivates the impurity states completely, ensuring improved photoconversion efficiency. The reduction of the band gap is found to be more prominent in the case of (W, 2N)-codoped SrTiO3 than (Mo, 2N)-codoped SrTiO3. In both the cases, the band edge positions are found to satisfy the thermodynamic criteria for overall water splitting. Our calculation predicts that the codoping of (Mo/W) and N in the 1 : 2 ratio also enhances the reducing properties at the conduction band in comparison to that in the undoped SrTiO3, which is beneficial for hydrogen release in water splitting. The present study thus demonstrates the effect of the nature of the dopant elements as well as their proportion to achieve the best outcome of the designed material for practical applications.

18.
Phys Chem Chem Phys ; 16(32): 17116-24, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25007948

RESUMO

In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.

19.
J Phys Chem B ; 115(42): 12126-34, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21919495

RESUMO

The structure of colloidal solution in presence of mixed electrolytes is studied using Monte Carlo simulation and density functional theory, based on a four-component model of the spherical double layer. In this model the ions and solvent molecules are treated as charged and neutral hard spheres, respectively, having equal diameter, and in addition the mixture of mono- and multivalent co-ions are also considered. The macroion is considered as a uniformly charged hard sphere surrounded by the electrolyte and the solvent. The density functional theory is based on a partially perturbative scheme, where the electrical part is calculated through perturbation with respect to uniform density and the hard sphere contribution is approximated using a weighted density approach. The theory is found to be in quantitative agreement with the Monte Carlo simulation results, for singlet density as well as the mean electrostatic potential profiles. The system is studied over a wide range of parametric conditions, viz. with different ionic valences as well as size, at varying electrolyte concentration ratio of mono- and multivalent co-ions of mixed electrolytes, at different surface charge densities, and radius of the macroion. The present work reflects that even a simple primitive model for the solvent is able to manipulate the hard-sphere and electrostatic correlations of the diffuse double layer in the ionic density as well as mean electrostatic potential profiles.

20.
J Phys Chem A ; 115(29): 8183-96, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21692536

RESUMO

Relaxation dynamics of the excited state of bis-[4-(dimethylamino)-phenyl] methaniminium chloride (Auramine) has been investigated using subpicosecond time-resolved absorption spectroscopic technique in both aprotic and alcoholic solvents. The locally excited (LE) state, formed following photoexcitation of Auramine using 400 nm light, undergoes intramolecular charge transfer (ICT) process, which is accompanied by the twisting of the dimethylanilino groups. Time evolution of the transient absorption-stimulated emission spectra as well as the wavelength dependence of the temporal dynamics investigated in each kind of solvents suggest that the relaxation process proceeds via the formation of at least two transient states (TS I and TS II), which are geometrical conformers and consecutively formed following the decay of the LE state. Twisting of the dimethylaniline groups are nearly barrierless processes, the rates of which show linear correlation both with the macroscopic or shear viscosities as well as the solvation times of the solvents. Time-dependent and fractional viscosity dependence of the relaxation rates of the LE and the TS I states in aprotic solvents suggest the multidimensionality of the reaction coordinate as well as reveal the viscoelastic property of the solvents. However, in normal alcohols, in addition to these two factors, activation energy of the solvent viscosity may be another important factor for the slower twisting dynamics of Auramine in alcohols. To explain the viscosity dependence of the decay time of the TS II state, which undergoes an efficient internal conversion process to the ground state, the possibility of occurrence of different mechanisms, such as, energy gap law, involvement of intramolecular high frequency modes, as well as the phenyl group twisting motion on a potential energy surface having a photochemical funnel, have been discussed. TDDFT method has been applied to obtain the optimized electronic structures of the transient states but it has been possible to obtain only that for the TS II state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...