Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(11): e2205752, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36782313

RESUMO

Blood-brain-barrier (BBB) disruption has been associated with a variety of central-nervous-system diseases. In vitro BBB models enable to investigate how the barrier reacts to external injury events, commonly referred to as insults. Here, a human-cell-based BBB platform with integrated, transparent electrodes to monitor barrier tightness in real time at high resolution is presented. The BBB model includes human cerebral endothelial cells and primary pericytes and astrocytes in a 3D arrangement within a pump-free, open-microfluidic platform. With this platform, this study demonstrates that oxygen-glucose deprivation (OGD), which mimics the characteristics of an ischemic insult, induces a rapid remodeling of the cellular actin structures and subsequent morphological changes in the endothelial cells. High-resolution live imaging shows the formation of large actin stress-fiber bundles in the endothelial layer during OGD application, which ultimately leads to cell shrinkage and barrier breakage. Simultaneous electrical measurements evidence a rapid decrease of the barrier electrical resistance before the appearance of stress fibers, which indicates that the barrier function is compromised already before the appearance of drastic morphological changes. The results demonstrate that the BBB platform recapitulates the main barrier functions in vitro and can be used to investigate rapid reorganization of the BBB upon application of external stimuli.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Actinas , Astrócitos , Microfluídica
2.
Adv Healthc Mater ; 12(6): e2202506, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651229

RESUMO

Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient-derived leukemia samples provide important information to tailor treatments for high-risk patients. However, currently used well-based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug-testing platform is developed that enables co-culturing of patient-derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well-based assays. By testing the susceptibility of primary patient-derived leukemia samples to the prodrug ifosfamide, sample-specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short-lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection.


Assuntos
Leucemia , Pró-Fármacos , Humanos , Criança , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/metabolismo , Ifosfamida/farmacologia , Ifosfamida/uso terapêutico , Ifosfamida/metabolismo , Leucemia/metabolismo , Técnicas de Cocultura , Fígado/metabolismo
3.
BME Front ; 2022: 1-21, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35761901

RESUMO

Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of ex vivo tissue slices or microelectrode-based brain implants.

4.
iScience ; 25(4): 104087, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378863

RESUMO

Schistosomiasis is a neglected tropical disease that affects over 200 million people annually. As the antischistosomal drug pipeline is currently empty, repurposing of compound libraries has become a source for accelerating drug development, which demands the implementation of high-throughput and efficient screening strategies. Here, we present a parallelized impedance-based platform for continuous and automated viability evaluation of Schistosoma mansoni schistosomula in 128 microwells during 72 h to identify antischistosomal hits in vitro. By initially screening 57 repurposed compounds against larvae, five drugs are identified, which reduce parasite viability by more than 70%. The activity profiles of the selected drugs are then investigated via real-time dose-response monitoring, and four compounds reveal high potency and rapid action, which renders them suitable candidates for follow-up tests against adult parasites. The study shows that our device is a reliable tool for real-time drug screening analysis of libraries to identify new promising therapeutics against schistosomiasis.

5.
Microsyst Nanoeng ; 8: 14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136653

RESUMO

As 3D in vitro tissue models become more pervasive, their built-in nutrient, metabolite, compound, and waste gradients increase biological relevance at the cost of analysis simplicity. Investigating these gradients and the resulting metabolic heterogeneity requires invasive and time-consuming methods. An alternative is using electrochemical biosensors and measuring concentrations around the tissue model to obtain size-dependent metabolism data. With our hanging-drop-integrated enzymatic glucose biosensors, we conducted current measurements within hanging-drop compartments hosting spheroids formed from the human colorectal carcinoma cell line HCT116. We developed a physics-based mathematical model of analyte consumption and transport, considering (1) diffusion and enzymatic conversion of glucose to form hydrogen peroxide (H2O2) by the glucose-oxidase-based hydrogel functionalization of our biosensors at the microscale; (2) H2O2 oxidation at the electrode surface, leading to amperometric H2O2 readout; (3) glucose diffusion and glucose consumption by cancer cells in a spherical tissue model at the microscale; (4) glucose and H2O2 transport in our hanging-drop compartments at the macroscale; and (5) solvent evaporation, leading to glucose and H2O2 upconcentration. Our model relates the measured currents to the glucose concentrations generating the currents. The low limit of detection of our biosensors (0.4 ± 0.1 µM), combined with our current-fitting method, enabled us to reveal glucose dynamics within our system. By measuring glucose dynamics in hanging-drop compartments populated by cancer spheroids of various sizes, we could infer glucose distributions within the spheroid, which will help translate in vitro 3D tissue model results to in vivo.

6.
Biomicrofluidics ; 15(6): 061302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917226

RESUMO

More than 20 years ago, electrical impedance spectroscopy (EIS) was proposed as a potential characterization method for flow cytometry. As the setup is comparably simple and the method is label-free, EIS has attracted considerable interest from the research community as a potential alternative to standard optical methods, such as fluorescence-activated cell sorting (FACS). However, until today, FACS remains by and large the laboratory standard with highly developed capabilities and broad use in research and clinical settings. Nevertheless, can EIS still provide a complement or alternative to FACS in specific applications? In this Perspective, we will give an overview of the current state of the art of EIS in terms of technologies and capabilities. We will then describe recent advances in EIS-based flow cytometry, compare the performance to that of FACS methods, and discuss potential prospects of EIS in flow cytometry.

7.
Adv Biol (Weinh) ; 5(8): e2100609, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145989

RESUMO

Safety assessment of the effects of developmental toxicants on pregnant women is challenging, and systemic effects in embryo-maternal interactions are largely unknown. However, most developmental toxicity studies rely on animal trials, while in vitro platforms that recapitulate the maternal-placental-embryonic axis are missing. Here, the development of a dedicated microfluidic device for co-cultivation of a placental barrier and 3D embryoid bodies to enable systemic toxicity testing at the embryo-maternal interface is reported. The microfluidic platform features simple handling and recuperation of both tissue models, which facilitates post-hoc in-depth analysis at the tissue and single-cell level. Gravity-driven flow enables inter-tissue communication through the liquid phase as well as simple and robust operation and renders the platform parallelizable. As a proof of concept and to demonstrate platform use for systemic embryotoxicity testing in vitro, maternal exposure to plastic microparticles is emulated, and microparticle effects on the embryo-placental co-culture are investigated.


Assuntos
Microfluídica , Placenta , Animais , Técnicas de Cocultura , Corpos Embrioides , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Gravidez
8.
ACS Infect Dis ; 7(7): 1894-1900, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33105989

RESUMO

Schistosomiasis is a major neglected tropical disease with more than 200 million infections annually. Despite only one drug, praziquantel, being available, the drug pipeline against schistosomiasis is empty, and drug screening tools have limitations. We evaluated the potential of human liver microtissues (hLiMTs) in antischistosomal drug discovery. Because hLiMTs express all human P450 enzymes, they are an excellent tool to evaluate compounds' bioinactivation, bioactivation, and toxicity. To validate the metabolic conversion capacity of hLiMTs, we first quantified (R)- and (S)-praziquantel and the main metabolite trans-OH-praziquantel following incubation with 0.032-50 µM (0.01-15.62 µg/mL) praziquantel for up to 72 h by a validated LC-MS/MS method. We cocultured hLiMTs with newly transformed schistosomula (NTS) and evaluated the antischistosomal activity and cytotoxicity of three prodrugs terfenadine, tamoxifen citrate, and flutamide. HLiMTs converted 300-350 ng (R)-praziquantel within 24 h into trans-OH-praziquantel. We observed changes in the IC50 values for terfenadine, flutamide, and tamoxifen citrate in comparison to the standard NTS assay in vitro. Cytotoxicity was observed at high concentrations of flutamide and tamoxifen citrate. An in vitro platform containing hLiMTs could serve as an advanced drug screening tool for Schistosoma mansoni, providing information on reduced or increased activity and toxicity.


Assuntos
Schistosoma mansoni , Esquistossomose mansoni , Animais , Cromatografia Líquida , Avaliação Pré-Clínica de Medicamentos , Humanos , Fígado , Esquistossomose mansoni/tratamento farmacológico , Espectrometria de Massas em Tandem
9.
Adv Biosyst ; 4(7): e1900304, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510834

RESUMO

Schistosomiasis is an acute and chronic disease caused by tropical parasitic worms of the genus Schistosoma, which parasitizes annually over 200 million people worldwide. Screening of antischistosomal compounds is hampered by the low throughput and potential subjectivity of the visual evaluation of the parasite phenotypes, which affects the current drug assays. Here, an impedance-based platform, capable of assessing the viability of Schistosoma mansoni schistosomula exposed to drugs, is presented. This automated and parallelized platform enables unbiased and continuous measurements of dose-response relationships for more than 48 h. The platform performance is established by exposure of schistosomula to three test compounds, praziquantel, oxethazaine, and mefloquine, which are known to affect the larvae phenotypes. The system is thereafter used to investigate the response of schistosomula to methiothepine, an antipsychotic compound, which causes complex drug-induced effects. Continuous monitoring of the parasites reveals transient behavioral phenotypes and allows for extracting temporal characteristics of dose-response curves, which are essential for selecting drugs that feature high activity and fast kinetics of action. These measurements demonstrate that impedance-based detection provides a wealth of information for the in vitro characterization of candidate antischistosomals and, represents a promising tool for the identification of new lead compounds.


Assuntos
Impedância Elétrica , Dispositivos Lab-On-A-Chip , Schistosoma mansoni/crescimento & desenvolvimento , Esquistossomicidas/farmacologia , Animais , Relação Dose-Resposta a Droga
10.
ACS Sens ; 5(7): 2036-2043, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519548

RESUMO

Currently, the use of electrical readout methods for the investigation of microtissue spheroids in combination with lab automation tools is hindered by the cable connections that are required to interrogate the on-chip-integrated electrodes. To overcome this limitation, we developed a wireless sensor scheme, which can detect the size variation of microtissues during long-term culturing and drug exposure assays. The sensor system includes an interrogation board, which is composed of an inductor-capacitor (LC) readout circuit, and the tissue culture platform with integrated split-ring sensors. The magnetic coupling between the LC circuit and the sensors enables the interrogation of the on-chip sensors without any wire connection to the culture platform. By optimizing the sensor dimensions and the LC resonance frequencies, we were able to avoid cross talk between neighboring sensors. We integrated 12 tissue compartments on a standard microscopy slide with a sensor-to-sensor pitch of 9 mm, which is in accordance with standard 96-well plate dimensions. As a proof-of-concept experiment for the developed system, we monitored continuously and during more than four days the growth inhibition of colon cancer microtissue spheroids that had been exposed to different concentrations of doxorubicin, a chemotherapeutic compound. The stability of the measurements during long-term culturing and the compatibility of the sensor scheme with standard lab equipment offer great potential for automated electrical microtissue spheroid characterization.

11.
Adv Mater ; 31(32): e1901556, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31148285

RESUMO

What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure-function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real-world applications.

12.
ACS Sens ; 3(12): 2613-2620, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426744

RESUMO

Schistosomiasis is a neglected tropical disease, caused by parasitic worms, which affects almost 200 million people worldwide. For over 40 years, chemotherapeutic treatment has relied on the administration of praziquantel, an efficacious drug against schistosomiasis. However, concerns about developing drug resistance require the discovery of novel drug compounds. Currently, the drug-screening process is mostly based on the visual evaluation of drug effects on worm larvae in vitro by a trained operator. This manual process is extremely labor-intensive, has limited throughput, and may be affected by subjectivity of the operator evaluation. In this paper, we introduce a microfluidic platform with integrated electrodes for the automated detection of worm larvae viability using an impedance-based approach. The microfluidic analysis unit consists of two sets of electrodes and a channel of variable geometry to enable counting and size detection of single parasite larvae and the collective evaluation of the motility of the larvae as an unbiased estimator for their viability. The current platform also allows for multiplexing of the analysis units resulting in increased throughput. We used our platform to record size and motility variations of Schistosoma mansoni larvae exposed to different concentrations of mefloquine, a drug with established in vitro antischistosomal properties. The developed platform demonstrates the potential of integrated microfluidic platforms for high-throughput antischistosomal drug screening.


Assuntos
Impedância Elétrica , Técnicas Eletroquímicas/métodos , Mefloquina/farmacologia , Técnicas Analíticas Microfluídicas/métodos , Esquistossomicidas/farmacologia , Animais , Dimetil Sulfóxido/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Testes de Sensibilidade Parasitária/instrumentação , Testes de Sensibilidade Parasitária/métodos , Schistosoma mansoni/efeitos dos fármacos
13.
Small ; 14(27): e1800826, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806108

RESUMO

The interplay of physical and chemical properties at the nanometer scale provides porous nanoparticles with unique sorption and interaction capabilities. These properties have aroused great interest toward this class of materials for application ranging from chemical and biological sensing to separation and drug delivery. However, so far the preferential uptake of different components of mixed solvents by porous nanoparticles is not measured due to a lack of methods capable of detecting the resulting change in physical properties. Here, a new method, nanomechanical mass correlation spectroscopy, is used to reveal an unexpected dependence of the effective mass density of porous metal-organic framework (MOF) nanoparticles on the chemistry of the solvent system and on the chemical functionalization of the MOF's internal surface. Interestingly, the pore size of the nanoparticles is much too large for the exclusion of small solvent molecules by steric hindrance. The variation of effective density of the nanoparticles with the solvent composition indicates that a complex solvent environment can form within or around the nanoparticles, which may substantially differ from the solvent composition.

14.
ACS Chem Biol ; 13(7): 1767-1784, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381325

RESUMO

Technological advances in microfabrication techniques in combination with organotypic cell and tissue models have enabled the realization of microphysiological systems capable of recapitulating aspects of human physiology in vitro with great fidelity. Concurrently, a number of analysis techniques has been developed to probe and characterize these model systems. However, many assays are still performed off-line, which severely compromises the possibility of obtaining real-time information from the samples under examination, and which also limits the use of these platforms in high-throughput analysis. In this review, we focus on sensing and actuation schemes that have already been established or offer great potential to provide in situ detection or manipulation of relevant cell or tissue samples in microphysiological platforms. We will first describe methods that can be integrated in a straightforward way and that offer potential multiplexing and/or parallelization of sensing and actuation functions. These methods include electrical impedance spectroscopy, electrochemical biosensors, and the use of surface acoustic waves for manipulation and analysis of cells, tissue, and multicellular organisms. In the second part, we will describe two sensor approaches based on surface-plasmon resonance and mechanical resonators that have recently provided new characterization features for biological samples, although technological limitations for use in high-throughput applications still exist.


Assuntos
Técnicas Biossensoriais/métodos , Células Cultivadas/fisiologia , Técnicas Eletroquímicas/métodos , Modelos Biológicos , Ressonância de Plasmônio de Superfície/métodos , Animais , Linhagem Celular Tumoral , Impedância Elétrica , Humanos , Som
15.
Artigo em Inglês | MEDLINE | ID: mdl-33409508

RESUMO

Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of Schistosoma mansoni larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.

16.
Anal Chem ; 87(3): 1821-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25539393

RESUMO

Protein aggregation is a widely studied phenomenon that is associated with many human diseases and with the degradation of biotechnological products. Here, we establish a new label-free method for characterizing the aggregation kinetics of proteins into amyloid fibrils by suspended microchannel resonators (SMR). SMR devices are unique in their ability to provide mass-based measurements under reaction-limited conditions in a 10 pL volume. To demonstrate the method, insulin seed fibrils of defined length, characterized by atomic force microscopy (AFM) and transmission electron microscopy (TEM), were covalently immobilized inside microchannels embedded within a micromechanical resonator, and the elongation of these fibrils under a continuous flow of monomer solution (rate ∼1 nL/s) was measured by monitoring the resonance frequency shift. The kinetics for concentrations below ∼0.6 mg/mL fits well with an irreversible bimolecular binding model with the rate constant kon = (1.2 ± 0.1) × 10(3) M(-1) s(-1). Rate saturation occurred at higher concentrations. The nonlinear on-rate for monomer concentrations from 0 to 6 mg/mL and for temperatures from 20 to 42 °C fit well globally with an energy landscape model characterized by a single activation barrier. Finally, elongation rates were studied under different solution conditions and in the presence of a small molecule inhibitor of amyloid growth. Due to the low volume requirements, high precision, and speed of SMR measurements, the method may become a valuable new tool in the screening for inhibitors and the study of fundamental biophysical mechanisms of protein aggregation processes.


Assuntos
Amiloide/química , Insulina/química , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Humanos , Proteínas Imobilizadas/química , Agregados Proteicos
17.
Lab Chip ; 14(2): 342-50, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24247122

RESUMO

We introduce the use of correlation analysis to extend the dynamic range of suspended micro- and nanochannel resonator (SMR/SNR) mass sensors by over five orders of magnitude. This method can analyze populations of particles flowing through an embedded channel micromechanical resonator, even when the individual particle masses are far below the noise floor. To characterize the method, we measured the mass of polystyrene nanoparticles with 300 zg resolution. As an application, we monitored the time course of insulin amyloid formation from pre-fibrillar aggregates to mature fibrils of 15 MDa average mass. Results were compared with thioflavin-T (ThT) assays and electron microscopy (EM). Mass measurements offer additional information over ThT during the fluorescent inaccessible lag period, and the average fibril dimensions calculated from the mass signal are in good accordance with EM. In the future, we envision that more detailed modeling will allow the computational deconvolution of multicomponent samples, enabling the mass spectrometric characterization of a variety of biomolecular complexes, small organelles, and nanoparticles in solution.


Assuntos
Soluções , Dispositivos Lab-On-A-Chip , Nanopartículas
18.
Clin Chem ; 59(4): 629-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23327782

RESUMO

BACKGROUND: Collection of epidemiological data and care of patients are hampered by lack of access to laboratory diagnostic equipment and patients' health records in resource-limited settings. We engineered a low-cost mobile device that combines cell-phone and satellite communication technologies with fluid miniaturization techniques for performing all essential ELISA functions. METHODS: We assessed the device's ability to perform HIV serodiagnostic testing in Rwanda and synchronize results in real time with electronic health records. We tested serum, plasma, and whole blood samples collected in Rwanda and on a commercially available sample panel made of mixed antibody titers. RESULTS: HIV testing on 167 Rwandan patients evaluated for HIV, viral hepatitis, and sexually transmitted infections yielded diagnostic sensitivity and specificity of 100% and 99%, respectively. Testing on 40 Rwandan whole-blood samples-using 1 µL of sample per patient-resulted in diagnostic sensitivity and specificity of 100% and 100%. The mobile device also successfully transmitted all whole-blood test results from a Rwandan clinic to a medical records database stored on the cloud. For all samples in the commercial panel, the device produced results in agreement with a leading ELISA test, including detection of weakly positive samples that were missed by existing rapid tests. The device operated autonomously with minimal user input, produced each result 10 times faster than benchtop ELISA, and consumed as little power as a mobile phone. CONCLUSIONS: A low-cost mobile device can perform a blood-based HIV serodiagnostic test with laboratory-level accuracy and real-time synchronization of patient health record data.


Assuntos
Sorodiagnóstico da AIDS/métodos , Telefone Celular , Área Carente de Assistência Médica , Ensaio de Imunoadsorção Enzimática , Humanos , Miniaturização , Ruanda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...