Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(26): e2301914, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424043

RESUMO

Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices.

2.
Adv Sci (Weinh) ; 9(19): e2105674, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35297223

RESUMO

The charge transport of crystalline organic semiconductors is limited by dynamic disorder that tends to localize charges. It is the main hurdle to overcome in order to significantly increase charge carrier mobility. An innovative design that combines a chemical structure based on sulfur-rich thienoacene with a solid-state herringbone (HB) packing is proposed and the synthesis, physicochemical characterization, and charge transport properties of two new thienoacenes bearing a central tetrathienyl core fused with two external naphthyl rings: naphtho[2,3-b]thieno-[2''',3''':4'',5'']thieno[2″,3″:4',5']thieno[3',2'-b]naphtho[2,3-b]thiophene (DN4T) and naphtho[1,2-b]thieno-[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[3',2'-b]naphtho[1,2-b]thiophene are presented. Both compounds crystallize with a HB pattern structure and present transfer integrals ranging from 33 to 99 meV (for the former) within the HB plane of charge transport. Molecular dynamics simulations point toward an efficient resilience of the transfer integrals to the intermolecular sliding motion commonly responsible for strong variations of the electronic coupling in the crystal. Best device performances are reached with DN4T with hole mobility up to µ = 2.1 cm2 V-1 s-1 in polycrystalline organic field effect transistors, showing the effectiveness of the electronic coupling enabled by the new aromatic core. These promising results pave the way to the design of high-performing materials based on this new thienoacene, notably through the introduction of alkyl side-chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...