Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(1): 10, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158448

RESUMO

The present study investigates the impact of the solid-state disorder of vortioxetine hydrobromide (HBr) on oxidative degradation under accelerated conditions. A range of solid-state disorders was generated via cryogenic ball milling. The solid-state properties were evaluated by calorimetry, infrared-, and Raman spectroscopies. While salt disproportionation occurred upon milling, no chemical degradation occurred by milling. The amorphous fraction remained physically intact under ambient storage conditions. Subsequently, samples with representative disordered fractions were mixed with a solid oxidative stressor (PVP-H2O2 complex) and were compressed to compacts. The compacts were exposed to 40°C/75% RH for up to 6 h. The sample was periodically withdrawn and analyzed for the physical transformations and degradation. Two oxidative degradation products (DPs) were found to be formed, for which dissimilar relations to the degree of disorder and kinetics of formation were observed. The degradation rate of the major DP formation obtained by fitting the exponential model to the experimental data was found to increase up to a certain degree of disorder and decrease with a further increase in the disordered fraction. In contrast, the minor DP formation kinetics was found to increase monotonically with the increase in the disorder content. For the similar crystallinity level, the degradation trend (rate and extent) differed between the single-phase disorder generated by milling and physically mixed two-phase systems. Overall, the study demonstrates the importance of evaluating the physical and chemical (in)stabilities of the disordered solid state of a salt form of a drug substance, generated through mechano-activation.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Vortioxetina , Estabilidade de Medicamentos , Oxirredução , Varredura Diferencial de Calorimetria
2.
J Pharm Sci ; 112(6): 1539-1565, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842482

RESUMO

Common energy-intensive processes applied in oral solid dosage development, such as milling, sieving, blending, compaction, etc. generate particles with surface and bulk crystal disorder. An intriguing aspect of the generated crystal disorder is its evolution and repercussion on the physical- and chemical stabilities of drugs. In this review, we firstly examine the existing literature on crystal disorder and its implications on solid-state stability of pharmaceuticals. Secondly, we discuss the key aspects related to the generation and evolution of crystal disorder, dynamics of the disordered/amorphous phase, analytical techniques to measure/quantify them, and approaches to model the disordering propensity from first principles. The main objective of this compilation is to provide special impetus to predict or model the chemical degradation(s) resulting from processing-induced manifestation in bulk solid manufacturing. Finally, a generic workflow is proposed that can be useful to investigate the relevance of crystal disorder on the degradation of pharmaceuticals during stability studies. The present review will cater to the requirements for developing physically- and chemically stable drugs, thereby enabling early and rational decision-making during candidate screening and in assessing degradation risks associated with formulations and processing.


Assuntos
Composição de Medicamentos , Composição de Medicamentos/métodos , Preparações Farmacêuticas , Estabilidade de Medicamentos
3.
Mol Pharm ; 20(2): 1307-1322, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36680524

RESUMO

The present study deals with the development of dexamethasone (DM)-loaded implants using ester end-capped Resomer RG 502 poly(lactic acid-co-glycolic acid) (PLGA) (502), acid end-capped Resomer RG 502H PLGA (502H), and a 502H:502 mixture (3:1) via hot melt extrusion (HME). The prepared intravitreal implants (20 and 40% DM loaded in each PLGA) were thoroughly investigated to determine the effect of different end-capped PLGA and drug loading on the long-term release profile of DM. The implants were characterized for solid-state active pharmaceutical ingredient (APIs) using DSC and SWAXS, water uptake during stability study, the crystal size of API in the implant matrix using hot-stage polarized light microscopy, and in vitro release profile. The kinetics of PLGA release was thoroughly investigated using quantitative 1H NMR spectroscopy. The polymorph of DM crystal was found to remain unchanged after the extrusion and stability study. However, around 3 times reduction in API particle size was observed after the HME process. The morphology and content uniformity of the RT-stored samples were found to be comparable to the initial implant samples. Interestingly, the samples (mainly 502H) stored at 40 °C and 75% RH for 30 d demonstrated marked deformation and a change in content uniformity. The rate of DM release was higher in the case of 502H samples with a higher drug loading (40% w/w). Furthermore, a simple digital in vitro DM release profile derived for the formulation containing a 3:1 ratio of 502H and 502 was comparable with the experimental release profile of the respective polymer mixture formulation. The temporal development of pores and/or voids in the course of drug dissolution, evaluated using µCT, was found to be a precursor for the PLGA release. Overall, the release profile of DM was found to be dependent on the PLGA type (independent of subtle changes in the formulation mass and diameter). However, the extent of release was found to be dependent on DM loading. Thus, the present investigation led to a thorough understanding of the physicochemical properties of different end-capped PLGAs and the underlying formulation microstructure on the release profile of a crystalline water-insoluble drug, DM, from the PLGA-based implant.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Dexametasona , Água/química
4.
Mol Pharm ; 19(2): 568-583, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35060741

RESUMO

In the present study, the oxidative degradation behavior of nifedipine (NIF) in amorphous solid dispersions (ASDs) prepared with poly(vinyl pyrrolidone) (PVP) with a short (K30) and a long (K90) chain length was investigated. The ASDs were prepared via dry ball-milling and analyzed using Fourier transform infrared (IR) spectroscopy, X-ray scattering, and differential scanning calorimetry. The ASDs were exposed to accelerated thermal-oxidative conditions using a pressurized oxygen headspace (120 °C for 1 day) and high temperatures at atmospheric pressure (60-120 °C for a period of 42 days). Additionally, solution-state oxidative degradation studies showed that pure NIF degrades to a greater extent than in the presence of PVP. Electronic structure calculations were performed to understand the impact of drug-polymer intermolecular interactions on the autoxidation of drugs. While no drug degradation was observed in freshly prepared ASD samples, alkyl free radicals were detected via electron paramagnetic resonance (EPR) spectroscopy. The free radicals were found to be consumed to a greater extent by PVP K30- than PVP K90-based ASDs upon exposure to high oxygen pressures. This was consistent with the greater solid-state oxidative degradation of NIF observed in ASDs with PVP K30 than with PVP K90. As no drug recrystallization occurred during this study period, the lower glass-transition temperature and presumed greater molecular mobility of PVP K30 and its ASD as compared to the PVP K90 system appear to contribute to the greater drug degradation in PVP-K30-based ASDs. The extent and the rate of oxidative degradation were higher in the case of PVP-K30-based ASD as compared to that in PVP-K90-based ASD, and the overall degradation increased with an increase in temperature. IR spectral analysis of drug-polymer interactions supports the electronic calculations of the oxidation process. We infer that, apart from the initial free radical content, the difference in the extent of drug-polymer intermolecular interactions in ASDs and amorphous stabilization during the forced oxidation experiments contribute to the observed differences in the autoxidative reactivity of the drug in ASDs with different PVP chain lengths. Overall, the chemical degradation of NIF in ASDs with two PVP chain lengths obtained from accelerated solid-state oxidation studies was in qualitative agreement with that obtained from long-term (3 years) storage under ambient conditions. The study highlights the ability of accelerated processes to determine the oxidative degradation behavior of polymeric ASDs and suggests that the polymer chain length could factor into chemical as well as physical stability considerations.


Assuntos
Nifedipino , Povidona , Varredura Diferencial de Calorimetria , Polímeros/química , Povidona/química , Solubilidade
5.
J Pharm Sci ; 111(5): 1224-1231, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34699842

RESUMO

This commentary presents contributions and accomplishments of Professor Saranjit Singh, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India, to pharmaceutical research and education. Prof. Singh completed his successful tenure in October 2021. Over his 40+ years of illustrious academic career, he trained 147 Masters and 15 PhD students in the fields of drug stability testing, degradation chemistry, impurity and metabolite characterization, and advanced analytical technologies. He has published ∼250 research articles, reviews, editorials, patent, book, and book chapters, and received numerous awards, including the Professor M.L. Khorana Memorial Lecture Award from the Indian Pharmaceutical Association (IPA) and the Outstanding Analyst and Eminent Analyst awards from the Indian Drug Manufacturers' Association (IDMA). This commentary highlights Prof. Singh's inspiring personal and renowned professional journey, including early life, education, career, accomplishments, as well as his services to academia, industry, and regulatory. By sharing the contributions and accomplishments of Prof. Singh, we strongly believe that his story will inspire the next generation of scientists to continue his legacy to advance the field.


Assuntos
Distinções e Prêmios , Mentores , História do Século XX , Humanos , Masculino
6.
Pharmaceutics ; 13(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672439

RESUMO

The present work evaluates the food effect on the absorption of rivaroxaban (Riva), a BCS II drug, from the orally administered commercial immediate-release tablet (Xarelto IR) using physiologically based pharmacokinetic (PBPK) and conventional in vitro-in vivo correlation (IVIVC) models. The bioavailability of Riva upon oral administration of Xarelto IR tablet is reported to exhibit a positive food effect. The PBPK model for Riva was developed and verified using the previously reported in vivo data for oral solution (5 and 10 mg) and Xarelto IR tablet (5 and 10 mg dose strength). Once the PBPK model was established, the in vivo performance of the tablet formulation with the higher dose strength (Xarelto IR tablet 20 mg in fasted and fed state) was predicted using the experimentally obtained data of in vitro permeability, biorelevant solubility and in vitro dynamic dissolution data using United States Pharmacopeia (USP) IV flow-through cell apparatus. In addition, the mathematical IVIVC model was developed using the in vitro dissolution and in vivo profile of 20 mg strength Xarelto IR tablet in fasted condition. Using the developed IVIVC model, the pharmacokinetic (PK) profile of the Xarelto IR tablet in fed condition was predicted and compared with the PK parameters obtained via the PBPK model. A virtual in vivo PK study was designed using a single-dose, 3-treatment cross-over trial in 50 subjects to predict the PK profile of the Xarelto® IR tablet in the fed state. Overall, the results obtained from the IVIVC model were found to be comparable with those from the PBPK model. The outcome from both models pointed to the positive food effect on the in vivo profile of the Riva. The developed models thus can be effectively extended to establish bioequivalence for the marketed and novel complex formulations of Riva such as amorphous solid dispersions.

7.
Mol Pharm ; 18(3): 862-877, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33475378

RESUMO

The present study investigates the chemical composition governing the physical properties of mono- and diglycerides (MDGs) at the microstructural level, as a function of aging and lot-to-lot variability. The physical structure of the MDG plays a vital role in ameliorating the emulsion stability and is widely explored in diverse research horizons related to the pharmaceutical, cosmetic, and food industries. In an effort to understand the mechanism of emulsion stabilization, physical properties were extensively evaluated in selective commercial lots to determine if there is a correlation between the chemical composition of MDG and physical properties. The solid state of the MDG samples with different aging profiles was characterized using X-ray scattering, differential scanning calorimetry, attenuated total reflection-Fourier transform infrared spectroscopy, and NMR relaxometry. Moreover, the kinetic aspect of solid-state transformation was also evaluated via treating MDG samples with a heat-cool cycle. The chemical composition of MDGs was quantified using a quantitative NMR (qNMR) method. Interestingly, the X-ray scattering results demonstrated a change in the MDG polymorphic form and an increase in the %ß content as a function of aging. The increase in the %ß content led to the formation of rigid crystal structures of MDG, as evident from the NMR relaxometry. Chemical quantification of isomeric composition revealed chemical composition change as a potentially critical factor responsible for the altered physical structures of MDG with respect to aging and lot-to-lot variability. The findings correlated the solid-state transformation with the change in the chemical composition of the MDG as a combined effect of aging and lot-to-lot variability. This work serves as a basis to better understand the interdependency of the physicochemical properties of MDG. Furthermore, the present work can also be used as guidance for setting up the specifications of MDG, as per the required polymorphic form for a multitude of applications.


Assuntos
Diglicerídeos/química , Excipientes/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
8.
AAPS PharmSciTech ; 22(1): 11, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270172

RESUMO

Glycerides are the main components of oils, and fats, used in formulated products in the food and cosmetic industry as well as in the pharmaceutical product industry. However, there is limited literature available on the analysis of the chemical composition of glycerides. The lack of a suitable analytical method for complete chemical profiling of glycerides is one of the bottlenecks in understanding and controlling the change in chemical composition during processing, formulation, and storage. Thus, the aim of the present study is to develop a calibration-free quantitative proton nuclear magnetic resonance (qHNMR) method for the simultaneous quantification of different components of glycerides. The qHNMR method was developed for the quantification of mono-, di-, and triglycerides; their positional isomers; free fatty acids; and glycerol content. The accuracy, precision, and robustness of the developed method were evaluated and were found suitable for the quantitative analysis of five batches of marketed excipient. The study demonstrates the potential of qHNMR method for the quantification of different components of glycerides in various marketed products. The method has the ability to identify the variability of glycerides among different batches and suppliers in terms of chemical composition and also to discern the changes during storage.


Assuntos
Excipientes/química , Glicerídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Triglicerídeos/análise
9.
AAPS PharmSciTech ; 21(5): 152, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32440782

RESUMO

The present study investigates concomitant processes of solid-state disordering and oxidation of simvastatin during milling. The separate dry ball milling of crystalline and amorphous powders of simvastatin were conducted at ambient temperature for 10 and 60 min each. The relative crystallinity was determined using X-ray scattering and oxidative degradation was analyzed using liquid chromatography. The physical and chemical transformations in the milled powder were evaluated using modulated differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy. The disordering during milling of the crystalline powder was found to progressively decrease the crystallinity. For the amorphous starting material, milling for 10 min induced a large extent of recrystallization, while milling for 60 min largely re-amorphized the powder. This solid-state disordering and/or ordering were accompanied by progressive air oxidation during milling. The infrared spectroscopic analysis revealed the molecular manifestations associated with the physicochemical transformations in the disordered solid states. The melting point of simvastatin depressed systematically with the increase in the degree of disorder as well as the degradation. The in situ cooling in DSC of milled samples from their molten state led to the formation of the co-amorphous phase between the drug and degradation products, which showed a consistent increase in glass transition temperature with the increase in the content of degradation products. The study overall demonstrates the solid-state re-ordering and disordering of crystalline and amorphous simvastatin accompanied by chemical degradation as the consequence of the mechano-activation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/química , Sinvastatina/química , Varredura Diferencial de Calorimetria , Análise Diferencial Térmica , Composição de Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Luz , Transição de Fase , Pós , Espalhamento de Radiação , Sinvastatina/administração & dosagem , Espectrofotometria Infravermelho , Raios X
10.
J Pharm Biomed Anal ; 178: 112893, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606565

RESUMO

The present work demonstrates the utility of temperature controlled set up with pressurized headspace oxygen as an approach to effectively reduce the time required for solid-state drug-excipient compatibility study. To illustrate the utility, the incompatibility of polyethylene glycol (PEG) and polyethylene oxide (PEO) with Famotidine (Fam) was shown. Owing to thermal and oxidative stress, polyethylene ether moieties of PEG generated reactive impurities, resulting in the degradation of Fam. The chemical degradation was evaluated via liquid chromatography. Around 20% of degradation was observed in the pressurized oxygen set up, whereas, no degradation was found in the absence of oxidative stress. On increasing the excipient fraction, the Fam degradation increased proportionally. Formation of aldehydes and free radicals from excipients were proposed as the precursors for Fam degradation. The generation of aldehydes and free radicals was confirmed by infrared and Electron Spin Resonance (ESR) spectroscopic analysis, respectively. Overall, the present study demonstrated the utility of pressurized oxygen set up as a rapid and routine tool for studying drug-excipient incompatibility at temperatures relevant drug-product manufacture.


Assuntos
Incompatibilidade de Medicamentos , Excipientes/química , Famotidina/química , Polietilenoglicóis/química , Química Farmacêutica/métodos , Cromatografia Líquida/métodos , Estudos de Viabilidade , Estresse Oxidativo , Oxigênio/química , Temperatura
11.
Pharmaceutics ; 11(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484442

RESUMO

Reactive impurities, such as hydrogen peroxide in excipients, raise a great concern over the chemical stability of pharmaceutical products. Traditional screening methods of spiking impurities into solid drug-excipient mixtures oversimplify the micro-environment and the physical state of such impurities in real dosage form. This can lead to an inaccurate prediction of the long-term product stability. This study presents the feasibility of using a polyvinylpyrrolidone-hydrogen peroxide complex (PVP-H2O2) as an oxidative agent for the solid state forced degradation of a selected drug, vortioxetine HBr. The PVP-H2O2 complex was prepared and characterized using FT-IR spectroscopy. The tablet compacts were made using a mixture of solid PVP-H2O2 complex and crystalline vortioxetine HBr powder. The compacts were exposed to 40 °C/75% RH condition in open and closed states for different time intervals. The extent and the type of drug degradation were analysed using LC and LC-MS. The extent of degradation was higher in the samples stored at the open state as compared to the close state. The solution state forced oxidation was conducted to verify the peroxide induced degradation reactions. The results evidence the utility of the proposed solid-state stressor and the method for screening the sensitivity of drugs to the excipient reactive impurities involving peroxides in solid-state.

12.
J Pharm Sci ; 108(10): 3272-3280, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173762

RESUMO

The present study investigated the impact of solid-state disorders generated during milling on the chemical reactivity of simvastatin. An amorphous and a partially crystalline simvastatin powders were generated via cryomilling simvastatin crystals for either 90 or 10 min, respectively. The thoroughly characterized milled powders were stored at 40°C/75% RH, in open and closed containers. The effect of milling and storage conditions on physical stability was investigated using simultaneous small and wide-angle X-ray scattering and differential scanning calorimetry. The chemical degradation was evaluated using liquid chromatography-mass spectrometry. Compared with the fully amorphous state, the partially crystalline simvastatin crystallized to a lower extent in the expense of higher chemical degradation on open storage. The closely stored samples degraded to a lower extent and crystallized to a higher extent than the openly stored ones. However, the trends of the total crystallinity and degradation between amorphous and partially crystalline powders were similar. Small-angle X-ray scattering revealed that the partially crystalline simvastatin comprised a higher extent of nanoscale density heterogeneity than the fully amorphous powder. The overall results pointed toward the role of the remaining amorphous content and the nanoscale and mesoscale density heterogeneity on the chemical reactivity in the disordered simvastatin.


Assuntos
Pós/química , Sinvastatina/química , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Estabilidade de Medicamentos , Tecnologia Farmacêutica/métodos , Difração de Raios X/métodos
13.
J Pharm Biomed Anal ; 56(3): 538-45, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21757313

RESUMO

Lornoxicam was subjected to forced degradation studies under hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress conditions, as defined under ICH guideline Q1A (R2). The drug degraded significantly in hydrolytic, oxidative and photoneutral conditions, leading to the formation of eight degradation products in total. It was stable on exposure to light and dry heat in the solid state. The stressed samples in which degradation was observed were mixed together and used to develop a stability-indicating HPLC method wherein degradation products were separated from the drug and also from each other. To characterize the degradation products, a complete mass fragmentation pathway of the drug was first established with the help of MS/TOF, MS(n) and H/D exchange mass studies. The same was followed by LC-MS/TOF and on-line H/D exchange experiments on the degradation products. The degradation pathway of the drug was outlined, justified by the mechanisms of formation of the degradation products.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Piroxicam/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Hidrólise , Oxirredução , Fotólise , Piroxicam/química , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...