Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497770

RESUMO

The detailed binding insight between the fluorophore and analyte plays a pivotal role in the design of an efficient chemosensor for water pollution. In this study, we designed a picolinic acid-functionalized calix[4]pyrrole ligand (PCACP). When testing out the fluorescence study with selected antibiotics, we observed remarkable enhancement of fluorescence spectra in the presence of ciprofloxacin, singling out the PCACP_Ciprofloxacin complex. The detailed binding mechanism is explored via computational methods including molecular docking and dynamics, DFT (density functional theory) and NBO (Natural Bonding Orbital) analysis. The result of this study provides the comprehensive insight into the involvement of functionalized group of PCACP and ciprofloxacin antibiotic. The results of the computational findings are further explored through NMR complexation study, which corroborate the computational findings. With the limit of detection calculated at 18 µM, we carried out the water sample analysis, which shows promising results. The outcome of this research provides a new, effortless fluorescence approach to monitor the presence of ciprofloxacin in water.In the presence of the ciprofloxacin antibiotic, the fluorescence spectra of PCACP experience remarkable enhancements. This complexation phenomenon is studied through different computational and experimental methods.Communicated by Ramaswamy H. Sarma.

2.
J Fluoresc ; 34(1): 139-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37310589

RESUMO

Bacterial contamination of water sources is a significant public health concern, and therefore, it is important to have accurate and efficient methods for monitoring bacterial concentration in water samples. Fluorescence-based methods, such as SYTO 9 and PI staining, have emerged as a promising approach for real-time bacterial quantification. In this review, we discuss the advantages of fluorescence-based methods over other bacterial quantification methods, including the plate count method and the most probable number (MPN) method. We also examine the utility of fluorescence arrays and linear regression models in improving the accuracy and reliability of fluorescence-based methods. Overall, fluorescence-based methods offer a faster, more sensitive, and more specific option for real-time bacterial quantification in water samples.


Assuntos
Bactérias , Água , Reprodutibilidade dos Testes , Coloração e Rotulagem
3.
J Biomol Struct Dyn ; : 1-24, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146736

RESUMO

Diversely functionalized pyrazolo-pyridine fused tetrazolo-pyrimidines 10aa-am and 10ba-bn were successfully synthesized via a catalyst-free synthetic protocol with moderate to very good yields. The compounds were evaluated for cytotoxicity against MCF-7 and HEK-293 cells using MTT assay. Among the tested compounds, 10ab (IC50- 23.83 µM) and 10ah (IC50- 23.30 µM) demonstrated the highest potency against MCF-7 cells, while 10bc (IC50- 14.46 µM) and 10bh (IC50- 2.53 µM) exhibited excellent cytotoxicity against HEK-293 cells. Additionally, antibacterial screening was performed against three Gram-negative bacteria (E. coli, P. aeruginosa, and S. enterica) and three Gram-positive bacteria (S. aureus, B. megaterium, and B. subtilis) using broth dilution method, while antifungal activity was assessed against three fungal strains (A. niger, Penicillium, and S. cerevisiae) using agar well diffusion method. In antimicrobial screening, the majority of the compounds demonstrated significant antibacterial efficacy compared to antifungal activity. We also conducted comprehensive computational studies, including DFT calculations, molecular docking and dynamics, and drug-likeness assessments. In the DFT study, compounds 10ac and 10bc displayed stable conformations, indicating their potential for higher therapeutic activity. Molecular docking analyses revealed compelling interactions, with compound 10ah demonstrating docking score -7.42 kcal/mol against catalytical domain PARP1 (PDB ID: 7KK4) and 10bh exhibiting a best docking score -10.77 kcal/mol against human corticotropin-releasing factor receptor 1 (PDB ID: 4Z9G). A 100 ns molecular dynamics (MD) simulation study of compounds 10ah and 10bh revealed the stable conformation and binding energy in a stimulating environment. In drug-likeness assessments, both the compounds 10ah and 10bh adhere all the established guidelines.Communicated by Ramaswamy H. Sarma.

4.
ACS Omega ; 8(44): 41523-41536, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969992

RESUMO

The detection of trace amounts of sulfosulfuron, a pesticide of increasing importance, has become a pressing issue, prompting the development of effective chemosensors. In this study, we functionalized cyclotricatechylene (CTC) with propyl-phthalimide due to the presence of electronegative oxygen and nitrogen binding sites. Our optimized ligand displayed the highest docking score with sulfosulfuron, and experimental studies confirmed a significant fluorescence enhancement upon its interaction with sulfosulfuron. To gain a deeper understanding of the binding mechanism, we introduced density functional theory (DFT) studies. We carried out binding constant, Job's plot, and limit of detection (LOD) calculations to establish the effectiveness of our chemosensor as a selective detector for sulfosulfuron. These findings demonstrate the potential of our chemosensor for future applications in the field of pesticide detection.

5.
J Fluoresc ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995071

RESUMO

This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including 1H-NMR, 13C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.

6.
J Fluoresc ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924381

RESUMO

A novel pyrene-substituted oxacalixarene was designed and synthesized as a selective probe for the simultaneous detection of MNA and 4-NP. Utilizing 1H-NMR, 13C-NMR, and FT-IR analysis techniques, its structure was characterized. The binding property of BPOC to a variety of NACs, including 1,3-DNB, 2,3-DNT, 2,4-DNT, 2,6-DNT, 4-NP, 4-NT, and PA, revealed that the sensor binds to MNA and 4-NP with remarkable selectivity. Binding constant reveals lower detection limits of MNA is 0.2 µM and 0.3 µM for 4-NP. Using docking and density functional theory (DFT), computational insights were provided for investigating the stability and spectroscopic analysis of the inclusion complex. From molecular docking study, we observed the best docking score of BPOC with 4-NT and MNA complex. The calculations supplement the findings significantly and clarify the structural geometry and mode of interactions in supramolecular complexation. In an MTT experiment on human PBMC to check for cytotoxicity, this chemical was found to influence 1 × 105 cell viability dose-dependently.

7.
Nanoscale ; 15(44): 17727-17738, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37881900

RESUMO

The emergence of "nanomotors", "nanomachines", and "nanorobotics" has transformed dynamic nanoparticle research, driving a transition from passive to active and intelligent nanoscale systems. This review examines two critical fields: the investigation of airborne particles, significant contributors to air pollution, and the rapidly emerging domain of catalytic and field-controlled nano- and micromotors. We examine the basic concepts of nano- and micromachines in motion and envision their possible use in a gaseous medium to trap and neutralize hazardous particulates. While past studies described the application of nanotechnology and nanomotors in various scenarios, airborne nano/micromachine motion and their control have yet to be thoroughly explored. This review intends to promote multidisciplinary research on nanomachines' propulsion and task-oriented applications, highlighting their relevance in obtaining a cleaner atmospheric environment, a critical component to consider for human health.


Assuntos
Nanopartículas , Nanotecnologia , Humanos , Movimento (Física) , Catálise
8.
J Fluoresc ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515663

RESUMO

We present the synthesis of a new oxacalix[4]arene system, DMANSOC, wherein two 5-(dimethylamino)-1-naphthalene sulfonamide subunits are attached to the lower rims of the basic oxacalix[4]arene platform. Extensive spectrophotometric studies were conducted to investigate the selectivity and sensitivity of DMANSOC towards nitroaromatic explosives. Detailed analysis of spectrophotometric data, utilizing techniques such as Stern-Volmer, Benesi-Hildebrand, Job's plot, and interference study, unequivocally demonstrated the effectiveness of DMANSOC as a highly efficient fluorescent sensor for 2,4,6-trinitrophenol explosive (TNP) detection in an aqueous medium. The sensor exhibited a linear concentration range of 7.5 µM to 50 µM, with a low detection limit of 4.64 µM and a high binding affinity of 2.45 × 104 M towards TNP. Furthermore, the efficiency of the sensor in environmental samples contaminated with TNP was evaluated, yielding excellent recovery rates. Complementary DFT calculations and molecular dynamics simulations were performed to elucidate the mechanism behind the selective fluorescence quenching of DMANSOC in the presence of TNP.

9.
J Biomol Struct Dyn ; : 1-8, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378514

RESUMO

Functionalized calix[4]pyrroles are at forefront of host-guest aided molecular sensors. They offer unique platform for flexible functionalization to develop receptors suitable for different applications. In this context, calix[4]pyrrole derivative (TACP) was functionalized with an acidic group to investigate its binding behavior with different amino acids. The acid functionalization facilitated host-guest interactions through hydrogen bonding and increase the solubility of ligand in 90% aqueous media. The results indicated that TACP exhibited significant fluorescence enhancement in the presence of tryptophan while no considerable changes were observed with other amino acids. The other complexation properties such as LOD and LOQ were determined to be 25 µM and 22 µM respectively with 1:1 stoichiometry. In addition, the proposed binding phenomena were further confirmed through computational docking studies and NMR complexation study. Overall, this work highlights the potential of acid functionalization in developing molecular sensors for amino acid detection using calix[4]pyrrole derivatives.Communicated by Ramaswamy H. Sarma.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122936, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269661

RESUMO

Despite the largely tranquil environment in which humans live, a chemical terrorism attack is still a public safety problem, for which the capacity to quickly and accurately detect chemical warfare agents (CWAs) constitute a significant barrier. In this study, a straightforward fluorescent probe based on dinitrophenylhydrazine has been synthesised. It exhibits great selectivity and sensitivity for the nerve agent mimicking dimethyl chlorophosphate (DMCP) in the MeOH solution. Dinitrophenylhydrazine-oxacalix[4]arene (DPHOC), a 2,4-dinitrophenylhydrazine (2,4-DNPH) derivative, was synthesised and characterized with NMR and ESI-MS. Photophysical behavior, specially spectrofluorometric analysis was introduced to investigate the sensing phenomena of DPHOC toward dimethyl chlorophosphate (DMCP). The LOD of DPHOC toward DMCP was determined to be 2.1 µM, with a linear range from 5 to 50 µM (R2 = 0.99933). Moreover, DPHOC has been proven to be a promising probe toward the real time detection of DMCP.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/análise , Corantes Fluorescentes/química , Dimiristoilfosfatidilcolina , Compostos Organofosforados/análise , Substâncias para a Guerra Química/análise
11.
J Fluoresc ; 33(5): 1961-1970, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36930343

RESUMO

Herein, we designed two fluorescent tetrasubstituted benzene sulfonyl appended Thiacalix[4]arene receptors named L1 and L2, which sensitively and selectively detect Sulfosulfuron among other herbicides and pesticides. The detection limit (LOD) was found to be 0.21 ppm and 0.35 ppm, and the enhancement constant (Ks) was determined to be 7.07 X 104 M-1 and 5.55 X 104 M-1 for L1 and L2, respectively. Using the non-linear regression method, the association constant was obtained as 2.1 X 104 M-1 and 2.23 X 104 M-1 whereas, the binding ratio was found to be 1:1 for both L1 and L2, respectively. Additionally, the interference studies show the selective nature of receptors for Sulfosulfuron among its sulfonylurea family. To further confirm the interaction mechanism, 1H-NMR spectroscopy, and a computational investigation were carried out, which validates the 1:1 binding ratio. The receptors were found to be recyclable in nature with simple acid-base treatment. This new approach of using supramolecules as fluorescent probes for sensitive and selective detection of herbicides is rare in the literature.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121889, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150260

RESUMO

Here in, we demonstrate a selective detection of Ag+ ion by the anthracene-based schiff base sensor AMC. The recognition event among sensor AMC and Ag+ ion was investigated by enhanced absorption band, red-shifted quenched emission spectra, electrochemical studies and DFT computational studies. The presence of Ag+ ion to solution of AMC quenched almost 50 % emission intensity of the ligand band. Data from high-resolution electrospray ionization mass spectrometry (ESI-HRMS), Ag+ titrations, and Job's plot studies all show that Ag+ binds to AMC in a 1:1 stoichiometric ratio.The quantitative parameters of sensor for silver ion are determined as the limit of detection (LOD) 5.95 × 10-7 M, and limit of quantitation (LOQ) 1.98 × 10-8 M in the linear range 3.48-20.31 × 10-6 M with good association affinity of 5.030 × 103 M-1. LMCT phenomenon from insilico studies, is in good agreement with the results obtained from other performed spectroscopic techniques. In addition, this sensor AMC was also successfully applied to real water samples for the identification and measurement of Ag+ ions.


Assuntos
Bases de Schiff , Prata , Espectrometria de Fluorescência/métodos , Prata/química , Bases de Schiff/química , Limite de Detecção , Íons , Antracenos , Corantes Fluorescentes/química
13.
Comput Biol Med ; 151(Pt A): 106318, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423529

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (Mpro) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Peptídeo Hidrolases , Pandemias
14.
J Fluoresc ; 32(4): 1425-1433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35438369

RESUMO

A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN- system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated "test strips" were prepared for visual detection of cyanide ions.


Assuntos
Colorimetria , Cianetos , Ânions , Corantes Fluorescentes/química , Pirenos
15.
Luminescence ; 37(3): 370-390, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994071

RESUMO

Amino acids are the most important part of the human biological system due to their role in living processes. The role of amino acids stretches beyond their traditional role as a building block for proteins, and deficiency of amino acids could lead to decreased immunity, digestive problems, depression, fertility issues, lower mental alertness, slowed growth in children, and many other health issues. The acute detection of amino acids is necessary to determine the human health domain. Here, in this review, we summarize and study the calixarenes as complexes that are of immeasurable value and their utilization for amino acid detection. Key factors such as noncovalent forces, limit of detection, and the supramolecular chemistry of calixarenes with amino acids have been well described. This study presents the most recent efforts made towards the development of potential and highly efficient calixarene-based sensors for the detection of amino acids.


Assuntos
Calixarenos , Aminoácidos , Calixarenos/química , Criança , Humanos
16.
J Fluoresc ; 32(2): 483-504, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34981281

RESUMO

A Novel calix[4]pyrrole system bearing carboxylic acid functionality [ABuCP] has been synthesized and its interaction towards various nitroaromatics compounds [NACs] were investigated. ABuCP showed significant color change with 1,3-dinitro benzene (1,3-DNB) in comparison to the solution of other nitroaromatic compounds such as 2,3-dinitro toluene (2,3-DNT), 2,4-dinitro toluene (2,4-DNT), 2,6-dinitro toluene (2,6-DNT), 4-NBB (4-nitrobenzyl bromide) and 4-nitro toluene (4-NT). The ABuCP-1,3-DNB complex produces a red shift in absorption spectra based on charge transfer mediated recognition. Additionally, the density functional theory calculation confirmed the possible mechanism for the binding of 1,3-DNB as a guest is well supported by the calculation of other parameters such as hardness, stabilization energy, softness, electrophilicity index and chemical potential. The TDDFT calculation facilitates the understanding of the proper binding mechanism in reference to experimental results. Additionally we have also developed its derivative which acts as a new fluorescent sensor which can selectively recognize Sr(II) ions. In this view its aminoanthraquinone derivative of calix[4]pyrrole i.e. ABuCPTAA is synthesized which also results in generation of high fluorescence capability sensor.

17.
J Fluoresc ; 32(2): 637-645, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35025015

RESUMO

Herein, a novel N-(4-(tert-butyl)-phenyl)-2-chloroacetamide functionalized thiacalix[4]arene architecture, viz TCAN2PA has been synthesized and the sensing behaviour towards metal ions were explored. The probe, TCAN2PA displayed "turn-on" fluorescence response towards Hg(II) ions in acetonitrile over a series of competing common metal ions. A bathochromic shift in absorption band along with a significant "Turn-On" fluorescence behaviour of TCAN2PA was observed upon interaction with Hg(II) ions. The lower rim modification of thiacalixarene with N-(4-(tert-butyl)-phenyl)-2-chloroacetamide actively contributes toward the fluorescence property due to the presence of strong electron-donating aryl amido substituent. Fluorescence titration experiments were conducted to find out the limit of detection and to understand binding stoichiometry as well. The electron transfer interactions between the electron rich TCAN2PA host with Hg(II) ions have been postulated which is also supported by computational modelling insights.

18.
J Fluoresc ; 31(3): 635-649, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33609215

RESUMO

Nanoscience is a multifaceted field which encompasses metal nanoparticles (MNPs) having novel and size-related optical properties significantly different from the bulk level as well as at the atomic level. Amongst noble MNPs, the silver nanoparticles (AgNPs) have unique properties for metal interaction. Presently, there have been expedite reports which are taken under the review in virtue of sensing the mercury ions in aqueous media. Mercury dissemination in various forms contaminates the ecosystem. Globally mercury is ranked as the most toxic element and an urgent threat to humans since it causes major health issues. Employing MNPs, especially AgNPs for the detection of mercury ions is the economic, handy and apt method in contrast to time-consuming methods that use expensive instrumentations. The review highlights a study of colorimetric and fluorimetric detection of the level of Hg (II) ions in aqueous media selectively with high sensitivity in different courses of conditions using AgNPs synthesized by various approaches. Graphical abstract.


Assuntos
Colorimetria/métodos , Poluentes Ambientais/análise , Fluorometria/métodos , Mercúrio/análise , Nanopartículas Metálicas/química , Prata/química
19.
Dalton Trans ; 49(22): 7459-7466, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32432588

RESUMO

An oxacalix[4]arene-Ce(iii) complex viz. L-Ce(III) has been introduced for the selective detection of As(v) and Cr(vi) oxyanions in aqueous medium. The binding mode of L-Ce(III) + AsO43-/CrO42- was completely investigated with fluorometric titration, time resolve fluorescent decay and FTIR analyses. Photoinduced electron transfer (PET) and chelation-enhanced fluorescence (CHEF) play an important role in the sensing of these oxyanions. The characteristic fluorescence of the L-Ce(III) complex has been quenched by AsO43- and CrO42- through cascading the ligating sites. Cyclic voltammetry (CV) experiments with various scan rates suggest that the electrochemical processes on the electrodes were controlled by diffusion. Both the analytes exhibit a lower limit of detection (LOD) below their standard EPA permissible limits. Moreover, the probe successfully detects the oxyanions in environmental real samples with excellent recovery ranging from 97 to 101%.


Assuntos
Arsênio/análise , Calixarenos/química , Cromo/análise , Complexos de Coordenação/química , Corantes Fluorescentes/química , Fenóis/química , Poluentes Químicos da Água/química , Água/química , Ânions/análise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Corantes Fluorescentes/síntese química , Modelos Moleculares , Estrutura Molecular
20.
J Recept Signal Transduct Res ; 39(3): 226-234, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31509043

RESUMO

Cardiotonic steroids (CTS) are steroidal drugs, processed from the seeds and dried leaves of the genus Digitalis as well as from the skin and parotid gland of amphibians. The most commonly known CTS are ouabain, digoxin, digoxigenin and bufalin. CTS can be used for safer medication of congestive heart failure and other related conditions due to promising pharmacological and medicinal properties. Ouabain isolated from plants is widely utilized in in vitro studies to specifically block the sodium potassium (Na+/K+-ATPase) pump. For checking, whether ouabain derivatives are robust inhibitors of Na+/K+-ATPase pump, molecular docking simulation was performed between ouabain and its derivatives using YASARA software. The docking energy falls within the range of 8.470 kcal/mol to 7.234 kcal/mol, in which digoxigenin was found to be the potential ligand with the best docking energy of 8.470 kcal/mol. Furthermore, pharmacophore modeling was applied to decipher the electronic features of CTS. Molecular dynamics simulation was also employed to determine the conformational properties of Na+/K+-ATPase-ouabain and Na+/K+-ATPase-digoxigenin complexes with the plausible structural integrity through conformational ensembles for 100 ns which promoted digoxigenin as the most promising CTS for treating conditions of congestive heart failure patients.


Assuntos
Glicosídeos Cardíacos/farmacologia , Simulação de Acoplamento Molecular , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Difusão , Digoxina/química , Digoxina/farmacologia , Ligação de Hidrogênio , Ligantes , Modelos Biológicos , Ouabaína/química , Ouabaína/farmacologia , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...