Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296796

RESUMO

An alternative electrosynthesis of PdTe, using the electrochemical atomic layer deposition (E-ALD) method, is reported. The cyclic voltammetry technique was used to analyze Au substrate in copper (Cu2+), and a tellurous (Te4+) solution was used to identify UPDs and set the E-ALD cycle program. Results obtained using atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques reveal the nanometer-sized flat morphology of the systems, indicating the epitaxial characteristics of Pd and PdTe nanofilms. The effect of the Pd:Te ratio on the crystalline structure, electronic properties, and magnetic properties was investigated using a combination of density functional theory (DFT) and X-ray diffraction techniques. Te-containing electrocatalysts showed improved peak current response and negative onset potential toward ethanol oxidation (5 mA; -0.49 V) than Pd (2.0 mA; -0.3 V). Moreover, DFT ab initio calculation results obtained when the effect of Te content on oxygen adsorption was studied revealed that the d-band center shifted relative to the Fermi level: -1.83 eV, -1.98 eV, and -2.14 eV for Pd, Pd3Te, and Pd3Te2, respectively. The results signify the weakening of the CO-like species and the improvement in the PdTe catalytic activity. Thus, the electronic and geometric effects are the descriptors of Pd3Te2 activity. The results suggest that Pd2Te2 is a potential candidate electrocatalyst that can be used for the fabrication of ethanol fuel cells.

2.
J Colloid Interface Sci ; 545: 138-152, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877997

RESUMO

Carbon dioxide (CO2) is considered a useful greenhouse gas that can be captured and be used in the electro-syntheses of useful chemicals or fuels. On the other hand, there's also a tremendous interest on ethanol beneficiation as it is largely produced from crops, and it is regarded as a potential candidate for low temperature fuel cell applications. Although ethanol possesses good advantages, its resistant to oxidation poses a threat. The main objective of the study is to synthesis bio-inspired metal oxide-support catalyst which will help enhance the activity, efficiency and selectivity of Pd catalyst in CO2 reduction, Fuel cell performance and ethanol oxidation. Here, Pd nanoparticles were supported on NiO/C through a green facile one-step process using pomegranate peel extracts as reducing agent. A series of characterizations were carried out to provide proof for and to quantify the presence of Pd, Ni, O and C in the prepared sample. Microscopic methods confirmed the successful preparation of pure NiO/C and (%5 Pd) Pd-NiO/C, evident by the key elemental components, mixed nanostructures and co-existence of Pd and NiO/C. The resultant Pd-NiO/C nanocatalyst revealed higher activity towards the oxidation of ethanol and that the nanocatalyst is more tolerant to poising by intermediate oxidation species. Enhanced cell performance with current and power densities of 66 mA cm-2 and 26 mW cm-2 relative to the commercial Pd/C were obtained under passive conditions at 1 M ethanol in 1MKOH. In addition, the nanocatalyst showed good selectivity to HCOOH with enhanced current efficiencies of 45%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...