Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 71(10): 2421-2431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35237846

RESUMO

Ipilimumab, a monoclonal antibody that recognizes cytotoxic T-lymphocyte associated protein 4 (CTLA-4), was the first immune checkpoint inhibitor approved by the FDA to treat metastatic melanoma patients. Multiple preclinical studies have proposed that Fc effector functions of anti-CTLA-4 therapy are required for anti-tumor efficacy, in part, through the depletion of intratumoral regulatory T cells (Tregs). However, the contribution of the Fc-independent functions of anti-CTLA-4 antibodies to the observed efficacy is not fully understood. H11, a non-Fc-containing single-domain antibody (VHH) against CTLA-4, has previously been demonstrated to block CTLA-4-ligand interaction. However, in vivo studies demonstrated lack of anti-tumor efficacy with H11 treatment. Here, we show that a half-life extended H11 (H11-HLE), despite the lack of Fc effector functions, induced potent anti-tumor efficacy in mouse syngeneic tumor models. In addition, a non-Fc receptor binding version of ipilimumab (Ipi-LALAPG) also demonstrated anti-tumor activity in the absence of Treg depletion. Thus, we demonstrate that Fc-independent functions of anti-CTLA-4 antibodies contributed to anti-tumor efficacy, which may indicate that non-Treg depleting activity of anti-CTLA-4 therapy could benefit cancer patients in the clinic.


Assuntos
Melanoma , Linfócitos T Reguladores , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígeno CTLA-4 , Modelos Animais de Doenças , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Melanoma/tratamento farmacológico , Camundongos
2.
Protein Expr Purif ; 52(1): 19-30, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16982200

RESUMO

Two DNA polymerase genes have been isolated from Thermococcus strains, Thermococcus zilligii from New Zealand, and the other, Thermococcus 'GT', a fast-growing strain isolated from the Galapagos trench. Both genes were isolated by genomic walking PCR, a technique that does not require expression of the gene product. Phylogenetic analysis of SSU rDNA showed that the two strains were not closely related, as confirmed by an examination of the DNA polymerase sequences. Inteinless versions of each gene were generated by overlap-extension PCR and transferred into plasmid expression vectors. The proteins were produced in an Escherichia coli strain with additional copies of tRNAs corresponding to rarely used codons and purified by standard chromatographic procedures. Both enzymes were able to support PCR, but the Thermococcus 'GT' polymerase required higher concentrations of template than the enzyme from T. zilligii. Both enzymes showed 3' to 5' exonuclease activity, which was abolished in the case of T. zilligii by mutating the aspartic acid at position 141 and the glutamic acid at position 143 to alanine. Both enzymes showed a significant increase in fidelity of replication compared to the family A Thermus aquaticus DNA polymerase, in agreement with other results reported for family B polymerases with proof-reading ability.


Assuntos
Proteínas Arqueais/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Thermococcus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/isolamento & purificação , Sequência de Bases , Primers do DNA , DNA Arqueal/genética , DNA Ribossômico/genética , DNA Polimerase Dirigida por DNA/isolamento & purificação , Éxons , Filogenia , Mapeamento por Restrição , Thermococcus/classificação , Thermococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...