Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Antimicrob Resist Infect Control ; 13(1): 112, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334226

RESUMO

Environmental cleaning is essential to patient and health worker safety, yet it is a substantially neglected area in terms of knowledge, practice, and capacity-building, especially in resource-limited settings. Public health advocacy, research and investment are urgently needed to develop and implement cost-effective interventions to improve environmental cleanliness and, thus, overall healthcare quality and safety. We outline here the CLEAN Group Consensus exercise yielding twelve urgent research questions, grouped into four thematic areas: standards, system strengthening, behaviour change, and innovation.


Assuntos
Consenso , Instalações de Saúde , Humanos , Infecção Hospitalar/prevenção & controle , Pesquisa , Controle de Infecções/métodos , Desinfecção/métodos , Zeladoria Hospitalar/normas
2.
BMC Health Serv Res ; 24(1): 1031, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237982

RESUMO

BACKGROUND: Hand hygiene is known to reduce healthcare-associated infections. However, it remains suboptimal among healthcare providers. In this study, we used the Behaviour-centered Design approach to explore the facilitators and deterrents to hand hygiene among healthcare providers in the Kampala Metropolitan area, Uganda. METHODS: We conducted a formative qualitative study as part of a cluster randomised trial in 19 healthcare facilities (HCFs). The study used 19 semi-structured and 18 key informant interviews to collect data on hand hygiene status and facilitators and deterrents of hand hygiene. Research assistants transcribed verbatim and used a thematic framework aided by Nvivo 14.0. to undertake analysis. We used thick descriptions and illustrative quotes to enhance the credibility and trustworthiness of our findings. RESULTS: About 47.4% of the HCFs had sufficient hand hygiene infrastructure, and 57.9% did not report total compliance with hand hygiene during patient care. The physical facilitator for hand hygiene was the presence of constant reminders such as nudges, while the biological included the frequency of patient contact and the nature of clinical work. The only biological deterrent was the heavy workload in HCFs. The executive brain facilitators included knowledge of workplace health risks, infection prevention and control (IPC) guidelines, and a positive attitude. A negative attitude was the executive brain deterrent to hand hygiene. Recognition, rewards, and fear of infections were the only motivated brain facilitators. Behavioural setting facilitators included proximity to functional hand hygiene infrastructure, the existence of active IPC committees, good leadership, and the availability of a budget for hand hygiene supplies. Behavioural setting deterrents included the non-functionality and non-proximity to hand hygiene infrastructure and inadequate supplies. CONCLUSIONS: The study revealed low compliance with hand hygiene during the critical moments of patient care and inadequacy of hand hygiene infrastructure. The deterrents to hand hygiene included a heavy workload, negative attitude, inadequate supplies, non-functionality, and long distance to hand washing stations. Facilitators included constant reminders, fear of infections, frequency of patient contact and nature of clinical work, positive attitude, knowledge of IPC guidelines, recognition and reward, good leadership, availability of budgets for hand hygiene supplies, availability and proximity to hand hygiene supplies and infrastructure and active IPC committees. TRIAL REGISTRATION: ISRCTN Registry with number ISRCTN98148144. The trial was registered on 23/11/2020.


Assuntos
Fidelidade a Diretrizes , Higiene das Mãos , Pessoal de Saúde , Pesquisa Qualitativa , Humanos , Higiene das Mãos/normas , Higiene das Mãos/estatística & dados numéricos , Uganda , Pessoal de Saúde/psicologia , Pessoal de Saúde/estatística & dados numéricos , Fidelidade a Diretrizes/estatística & dados numéricos , Feminino , Masculino , Atitude do Pessoal de Saúde , Entrevistas como Assunto , Infecção Hospitalar/prevenção & controle , Adulto
3.
Front Med (Lausanne) ; 11: 1417967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323476

RESUMO

Since the coronavirus disease 2019 (COVID-19) pandemic, wastewater-based epidemiology (WBE) has been widely applied in many countries and regions for monitoring COVID-19 transmission in the population through testing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. However, the amount of virus shed by individuals over time based on the stage of infection and accurate number of infections in the community creates challenges in predicting COVID-19 prevalence in the population and interpreting WBE results. In this study, we measured SARS-CoV-2, pepper mild mottle virus (PMMoV), and human mitochondrial DNA (mtDNA) in longitudinal fecal samples collected from 42 COVID-19 patients for up to 42 days after diagnosis. SARS-CoV-2 RNA was detected in 73.1% (19/26) of inpatient study participants in at least one of the collected fecal specimens during the sampling period. Most participants shed the virus within 3 weeks after diagnosis, but five inpatient participants still shed the virus between 20 and 60 days after diagnosis. The median concentration of SARS-CoV-2 in positive fecal samples was 1.08 × 105 genome copies (GC)/gram dry fecal material. PMMoV and mtDNA were detected in 99.4% (154/155) and 100% (155/155) of all fecal samples, respectively. The median concentrations of PMMoV RNA and mtDNA in fecal samples were 1.73 × 107 and 2.49 × 108 GC/dry gram, respectively. These results provide important information about the dynamics of fecal shedding of SARS-CoV-2 and two human fecal indicators in COVID-19 patients. mtDNA showed higher positive rates, higher concentrations, and less variability between and within individuals than PMMoV, suggesting that mtDNA could be a better normalization factor for WBE results than PMMoV.

4.
PLOS Glob Public Health ; 4(8): e0002880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39163285

RESUMO

Cholera is a diarrhoeal disease caused by Vibrio cholerae (V. cholerae) bacterium, with strains belonging to serogroups 01 and 0139 causing a huge proportion of the disease. V. cholerae can contaminate drinking water sources and food through poor sanitation and hygiene. This study aimed to identify environmental routes of exposure to V. cholerae within Mukuru informal settlement in Nairobi. We collected nine types of environmental samples (drinking water, flood water, open drains, surface water, shaved ice, raw produce, street food, soil, and public latrine swabs) over 12 months. All samples were analysed for V. cholerae by culture and qPCR, then qPCR-positive samples were quantified using a V. cholerae DNA standard. Data about the frequency of contact with the environment was collected using behavioural surveys. Of the 803 samples collected, 28.5% were positive for V. cholerae by qPCR. However, none were positive for V. cholerae by culture. V. cholerae genes were detected in majority of the environmental water samples (79.3%), including open drains, flood water, and surface water, but were only detected in small proportions of other sample types. Vibrio-positive environmental water samples had higher mean V. cholerae concentrations [2490-3469 genome copies (gc) per millilitre (mL)] compared to drinking water samples (25.6 gc/mL). Combined with the behavioural data, exposure assessment showed that contact with surface water had the highest contribution to the total V. cholerae exposure among children while ingestion of municipal drinking water and street food and contact with surface water made substantial contributions to the total V. cholerae exposure for adults. Detection of V. cholerae in street food and drinking water indicates possible risk of exposure to toxigenic V. cholerae in this community. Exposure to V. cholerae through multiple pathways highlights the need to improve water and sanitation infrastructure, strengthen food hygiene practices, and roll out cholera vaccination.

5.
Emerg Infect Dis ; 30(13): S21-S27, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561638

RESUMO

Institution-level wastewater-based surveillance was implemented during the COVID-19 pandemic, including in carceral facilities. We examined the relationship between COVID-19 diagnostic test results of residents in a jail in Atlanta, Georgia, USA (average population ≈2,700), and quantitative reverse transcription PCR signal for SARS-CoV-2 in weekly wastewater samples collected during October 2021‒May 2022. The jail offered residents rapid antigen testing at entry and periodic mass screenings by reverse transcription PCR of self-collected nasal swab specimens. We aggregated individual test data, calculated the Spearman correlation coefficient, and performed logistic regression to examine the relationship between strength of SARS-CoV-2 PCR signal (cycle threshold value) in wastewater and percentage of jail population that tested positive for COVID-19. Of 13,745 nasal specimens collected, 3.9% were COVID-positive (range 0%-29.5% per week). We observed a strong inverse correlation between diagnostic test positivity and cycle threshold value (r = -0.67; p<0.01). Wastewater-based surveillance represents an effective strategy for jailwide surveillance of COVID-19.


Assuntos
COVID-19 , Gastrópodes , Humanos , Animais , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Georgia/epidemiologia , Águas Residuárias , Prisões Locais , Pandemias , RNA Viral
6.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790500

RESUMO

Background: Noroviruses (NoVs) are a leading cause of non-bacterial gastroenteritis in young children and adults worldwide. Snow Mountain Virus (SMV) is the prototype of NoV GII genotype 2 (GII.2) that has been developed as a viral model for human challenge models, an important tool for studying pathogenesis and immune response of NoV infections and for evaluating NoV vaccine candidates. Previous studies have identified blockade antibodies that block the binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs) as a surrogate for neutralization in human Norwalk virus and GII.4 infections but little is known about SMV blockade antibodies. Methods: In this secondary data analysis study, blockade antibodies were characterized in pre-challenge and post-challenge serum samples from human subjects challenged with a new SMV inoculum. The correlation between blockade antibody geometric mean antibody titers (GMTs) and SMV-specific serum IgG/IgA GMTs were examined after stratifying the subjects by infection status. A linear mixed model was applied to test the association between HBGA blockade antibody concentrations and post-challenge days accounting for covariates and random effects. Results: Laboratory results from 33 SMV inoculated individuals were analyzed and 75.7% (25/33) participants became infected. Serum SMV-specific blockade antibodies, IgA, and IgG were all significantly different between infected and uninfected individuals beginning day 15 post-challenge. Within infected individuals, a significant correlation was observed between both IgG and IgA and blockade antibody concentration as early as day 6 post-challenge. Analysis of blockade antibody using the linear mixed model showed that infected individuals, when compared to uninfected individuals, had a statistically significant increase in blockade antibody concentrations across the post-challenge days. Among the post-challenge days, blockade antibody concentrations on days 15, 30, and 45 were significantly higher than those observed pre-challenge. The intraclass correlation coefficient (ICC) analysis indicated that the variability of blockade antibody titers is more observed between individuals rather than observations within subjects. Conclusions: These results indicate that HBGA-blockade antibody GMTs are generated after SMV challenge and the blockade antibodies were still detectable at day 45 post-challenge. These data indicate that the second generation of SMV inoculum is highly effective.

7.
Front Microbiol ; 14: 1215311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476666

RESUMO

Introduction: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA monitoring in wastewater has become an important tool for Coronavirus Disease 2019 (COVID-19) surveillance. Grab (quantitative) and passive samples (qualitative) are two distinct wastewater sampling methods. Although many viral concentration methods such as the usage of membrane filtration and skim milk are reported, these methods generally require large volumes of wastewater, expensive lab equipment, and laborious processes. Methods: The objectives of this study were to compare two workflows (Nanotrap® Microbiome A Particles coupled with MagMax kit and membrane filtration workflows coupled with RNeasy kit) for SARS-CoV-2 recovery in grab samples and two workflows (Nanotrap® Microbiome A Particles and skim milk workflows coupled with MagMax kit) for SARS-CoV-2 recovery in Moore swab samples. The Nanotrap particle workflow was initially evaluated with and without the addition of the enhancement reagent 1 (ER1) in 10 mL wastewater. RT-qPCR targeting the nucleocapsid protein was used for detecting SARS-CoV-2 RNA. Results: Adding ER1 to wastewater prior to viral concentration significantly improved viral concentration results (P < 0.0001) in 10 mL grab and swab samples processed by automated or manual Nanotrap workflows. SARS-CoV-2 concentrations in 10 mL grab and Moore swab samples with ER1 processed by the automated workflow as a whole showed significantly higher (P < 0.001) results than 150 mL grab samples using the membrane filtration workflow and 250 mL swab samples using the skim milk workflow, respectively. Spiking known genome copies (GC) of inactivated SARS-CoV-2 into 10 mL wastewater indicated that the limit of detection of the automated Nanotrap workflow was ~11.5 GC/mL using the RT-qPCR and 115 GC/mL using the digital PCR methods. Discussion: These results suggest that Nanotrap workflows could substitute the traditional membrane filtration and skim milk workflows for viral concentration without compromising the assay sensitivity. The manual workflow can be used in resource-limited areas, and the automated workflow is appropriate for large-scale COVID-19 wastewater-based surveillance.

8.
Water Res ; 229: 119516, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379453

RESUMO

Monitoring SARS-CoV-2 in wastewater is a valuable approach to track COVID-19 transmission. Designing wastewater surveillance (WWS) with representative sampling sites and quantifiable results requires knowledge of the sewerage system and virus fate and transport. We developed a multi-level WWS system to track COVID-19 in Atlanta using an adaptive nested sampling strategy. From March 2021 to April 2022, 868 wastewater samples were collected from influent lines to wastewater treatment facilities and upstream community manholes. Variations in SARS-CoV-2 concentrations in influent line samples preceded similar variations in numbers of reported COVID-19 cases in the corresponding catchment areas. Community sites under nested sampling represented mutually-exclusive catchment areas. Community sites with high SARS-CoV-2 detection rates in wastewater covered high COVID-19 incidence areas, and adaptive sampling enabled identification and tracing of COVID-19 hotspots. This study demonstrates how a well-designed WWS provides actionable information including early warning of surges in cases and identification of disease hotspots.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral
9.
J Travel Med ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074164

RESUMO

BACKGROUND: Acute gastroenteritis (AGE) is a major medical condition for travellers worldwide, particularly travellers to low- and middle-income countries. Norovirus (NoV) is the most common cause of viral AGE in older children and adults, but data on prevalence and impact among travellers is limited. METHODS: Prospective, multi-site, observational cohort study conducted 2015-2017, among adult international travellers from the US and Europe to areas of moderate to high risk of travel-acquired AGE. Participants provided self-collected pre-travel stool samples and self-reported AGE symptoms while travelling. Post-travel stool samples were requested from symptomatic subjects and a sample of asymptomatic travellers within 14days of return. Samples were tested for NoV by RT-qPCR, genotyped if positive, and tested for other common enteric pathogens by Luminex xTAG GPP. RESULTS: Of the 1109 participants included, 437 (39.4%) developed AGE symptoms resulting in an overall AGE incidence of 24.7 per 100 person-weeks (95% CI: 22.4; 27.1). Twenty NoV-positive AGE cases (5.2% of those tested) were identified at an incidence of 1.1 per 100 person-weeks (95% CI: 0.7; 1.7). NoV-positive samples belonged mostly to genogroup GII (18, 85.7%); None of the 13 samples sequenced belonged to genotype GII.4. Clinical severity of AGE was higher for NoV-positive than for NoV-negative cases (mean modified Vesikari Score 6.8 vs 4.9) with more cases classified as severe or moderate (25% vs 6.8%). Eighty percent of NoV-positive participants (vs. 38.9% in NoV-negative) reported at least moderate impact on travel plans. CONCLUSIONS: AGE is a prevalent disease among travellers with a small proportion associated with NoV. Post-travel stool sample collection timing might have influenced the low number of NoV cases detected; however, NoV infections resulted in high clinical severity and impact on travel plans. These results may contribute to targeted vaccine development and the design of future studies on NoV epidemiology.

10.
Arch Microbiol Immunol ; 7(4): 318-325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38707746

RESUMO

Background: Noroviruses (NoVs) are a leading cause of non-bacterial gastroenteritis in young children and adults worldwide. Snow Mountain Virus (SMV) is the prototype of NoV GII genotype 2 (GII.2) that has been developed as a viral model for human challenge studies, an important tool for studying pathogenesis and immune response of NoV infections and for evaluating NoV vaccine candidates. Previous studies have identified blockade antibodies that block the binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs) as a surrogate for neutralization in human Norwalk virus and GII.4 infections but little is known about SMV blockade antibodies. Methods: In this secondary data analysis study, blockade antibodies were characterized in pre-challenge and post-challenge serum samples from human subjects challenged with a new SMV inoculum. The correlation between blockade antibody geometric mean antibody titers (GMTs) and SMV-specific serum IgG/IgA GMTs were examined after stratifying the subjects by infection status. A linear mixed model was applied to test the association between HBGA blockade antibody concentrations and post-challenge days accounting for covariates and random effects. Results: Laboratory results from 33 SMV inoculated individuals were analyzed and 75.7% (25/33) participants became infected. Serum SMV-specific blockade antibodies, IgA, and IgG were all significantly different between infected and uninfected individuals beginning day 15 post-challenge. Within infected individuals, a significant correlation was observed between both IgG and IgA and blockade antibody concentration as early as day 6 post-challenge. Analysis of blockade antibody using the linear mixed model showed that infected individuals, when compared to uninfected individuals, had a statistically significant increase in blockade antibody concentrations across the post-challenge days. Among the post-challenge days, blockade antibody concentrations on days 15, 30, and 45 were significantly higher than those observed pre-challenge. The intraclass correlation coefficient (ICC) analysis indicated that the variability of blockade antibody titers is more observed between individuals rather than within subjects. Conclusions: These results indicate that HBGA-blockade antibody GMTs are generated after SMV challenge and the blockade antibodies were still detectable at day 45 post-challenge. These data indicate that the second-generation of SMV inoculum is highly effective.

12.
Environ Sci Technol Lett ; 9(6): 543-550, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35719858

RESUMO

An end goal of fecal source tracking (FST) is to provide information on risk of transmission of waterborne illnesses associated with fecal contamination. Ideally, concentrations of FST markers in ambient waters would reflect exposure risk. Human mtDNA is an FST marker that is exclusively human in origin and may be elevated in feces of individuals experiencing gastrointestinal inflammation. In this study, we examined whether human mtDNA is elevated in fecal samples from individuals with symptomatic norovirus infections using samples from the United States (US), Mozambique, and Bangladesh. We quantified hCYTB484 (human mtDNA) and HF183/BacR287 (human-associated Bacteroides) FST markers using droplet digital polymerase chain reaction. We observed the greatest difference in concentrations of hCYTB484 when comparing samples from individuals with symptomatic norovirus infections versus individuals without norovirus infections or diarrhea symptoms: log10 increase of 1.42 in US samples (3,820% increase, p-value = 0.062), 0.49 in Mozambique (308% increase, p-value = 0.061), and 0.86 in Bangladesh (648% increase, p-value = 0.035). We did not observe any trends in concentrations of HF183/BacR287 in the same samples. These results suggest concentrations of fecal mtDNA may increase during symptomatic norovirus infection and that mtDNA in environmental samples may represent an unambiguously human source-tracking marker that correlates with enteric pathogen exposure risk.

13.
Curr Opin Environ Sci Health ; 27: 100334, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35434440

RESUMO

The ongoing pandemic of the coronavirus disease 2019 (COVID-19) is a public health crisis of global concern. The progression of the COVID-19 pandemic has been monitored in the first place by testing symptomatic individuals for SARS-CoV-2 virus in the respiratory samples. Concurrently, wastewater carries feces, urine, and sputum that potentially contains SARS-CoV-2 intact virus or partially damaged viral genetic materials excreted by infected individuals. This brings significant opportunities for understanding the infection dynamics by environmental surveillance. It has advantages for the country, especially in densely populated areas where individual clinical testing is difficult. However, there are several challenges including: 1) establishing a sampling plan and schedule that is representative of the various catchment populations 2) development and validation of standardized protocols for the laboratory analysis 3) understanding hydraulic flows and virus transport in complex wastewater drainage systems and 4) collaborative efforts from government agencies, NGOs, public health units and academia.

14.
J Infect Dis ; 226(10): 1771-1780, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35137154

RESUMO

BACKGROUND: Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS: Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain virus (SMV) GII.2 norovirus inoculum (1.2 × 104 to 1.2 × 107 genome equivalent copies [GEC]; n = 38) or placebo (n = 6). Illness was defined as diarrhea and/or vomiting postchallenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV immunoglobulin G [IgG] seroconversion). RESULTS: The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between prechallenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary immunoglobulin A and infection. The median infectious dose (ID50) was 5.1 × 105 GEC. CONCLUSIONS: High rates of infection and illness were observed in both secretor-positive and secretor-negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics. CLINICAL TRIALS REGISTRATION: NCT02473224.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Adulto , Humanos , Norovirus/genética , Diarreia , Genótipo , Imunoglobulina G
15.
Sci Total Environ ; 821: 153291, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090922

RESUMO

As COVID-19 continues to spread globally, monitoring the disease at different scales is critical to support public health decision making. Surveillance for SARS-CoV-2 RNA in wastewater can supplement surveillance based on diagnostic testing. In this paper, we report the results of wastewater-based COVID-19 surveillance on Emory University campus that included routine sampling of sewage from a hospital building, an isolation/quarantine building, and 21 student residence halls between July 13th, 2020 and March 14th, 2021. We examined the sensitivity of wastewater surveillance for detecting COVID-19 cases at building level and the relation between Ct values from RT-qPCR results of wastewater samples and the number of COVID-19 patients residing in the building. Our results show that weekly wastewater surveillance using Moore swab samples was not sensitive enough (6 of 63 times) to reliably detect one or two sporadic cases in a residence building. The Ct values of the wastewater samples over time from the same sampling location reflected the temporal trend in the number of COVID-19 patients in the isolation/quarantine building and hospital (Pearson's r < -0.8), but there is too much uncertainty to directly estimate the number of COVID-19 cases using Ct values. After students returned for the spring 2021 semester, SARS-CoV-2 RNA was detected in the wastewater samples from most of the student residence hall monitoring sites one to two weeks before COVID-19 cases surged on campus. This finding suggests that wastewater-based surveillance can be used to provide early warning of COVID-19 outbreaks at institutions.


Assuntos
COVID-19 , Águas Residuárias , COVID-19/epidemiologia , Humanos , RNA Viral , SARS-CoV-2 , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias
16.
Sci Total Environ ; 806(Pt 3): 151273, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718001

RESUMO

BACKGROUND: During 2014 to 2019, the SaniPath Exposure Assessment Tool, a standardized set of methods to evaluate risk of exposure to fecal contamination in the urban environment through multiple exposure pathways, was deployed in 45 neighborhoods in ten cities, including Accra and Kumasi, Ghana; Vellore, India; Maputo, Mozambique; Siem Reap, Cambodia; Atlanta, United States; Dhaka, Bangladesh; Lusaka, Zambia; Kampala, Uganda; Dakar, Senegal. OBJECTIVE: Assess and compare risk of exposure to fecal contamination via multiple pathways in ten cities. METHODS: In total, 4053 environmental samples, 4586 household surveys, 128 community surveys, and 124 school surveys were collected. E. coli concentrations were measured in environmental samples as an indicator of fecal contamination magnitude. Bayesian methods were used to estimate the distributions of fecal contamination concentration and contact frequency. Exposure to fecal contamination was estimated by the Monte Carlo method. The contamination levels of ten environmental compartments, frequency of contact with those compartments for adults and children, and estimated exposure to fecal contamination through any of the surveyed environmental pathways were compared across cities and neighborhoods. RESULTS: Distribution of fecal contamination in the environment and human contact behavior varied by city. Universally, food pathways were the most common dominant route of exposure to fecal contamination across cities in low-income and lower-middle-income countries. Risks of fecal exposure via water pathways, such as open drains, flood water, and municipal drinking water, were site-specific and often limited to smaller geographic areas (i.e., neighborhoods) instead of larger areas (i.e., cities). CONCLUSIONS: Knowledge of the relative contribution to fecal exposure from multiple pathways, and the environmental contamination level and frequency of contact for those "dominant pathways" could provide guidance for Water, Sanitation, and Hygiene (WASH) programming and investments and enable local governments and municipalities to improve intervention strategies to reduce the risk of exposure to fecal contamination.


Assuntos
Países em Desenvolvimento , Escherichia coli , Bangladesh , Teorema de Bayes , Criança , Cidades , Monitoramento Ambiental , Fezes , Humanos , Saneamento , Senegal , Uganda , Estados Unidos , Zâmbia
17.
Sci Total Environ ; 807(Pt 3): 151047, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673061

RESUMO

SARS-CoV-2 is a respiratory virus, but it is also detected in a significant proportion of fecal samples from COVID-19 cases. Recent studies have shown that wastewater surveillance can be a low-cost tool compared to massive diagnostic testing for tracking COVID-19 outbreaks in communities, but most studies have focused on sampling from wastewater treatment plants. Institutional level wastewater surveillance may serve well for early warning purposes because specific geographic areas/populations with emerging cases can be tracked and immediate action can be executed in the event of a positive wastewater signal. In this study, a novel Moore swab method was developed and used for wastewater surveillance of COVID-19 at an institutional level. Of the 442 swab samples tested, 148 (33.5%) swabs collected from the three campuses and two buildings were positive for SARS-CoV-2 RNA. Further study of the quarantine building with a known number of cases indicated that this method was sensitive enough to detect few cases in the building. In addition, comparison between grab samples and Moore swab samples from the hospital sewage line indicated that Moore swabs were more sensitive than grab samples and offer a simple, inexpensive method for obtaining a composite sample of virus in wastewater over a 24-48 h period. These results suggest that collection and analyses of Moore swabs for SARS-CoV-2 RNA detection is a sensitive, low-cost, and easy to use tool for COVID-19 surveillance that is useful for institutional settings and could be deployed in low-resource settings to identify emerging COVID-19 clusters in communities.


Assuntos
COVID-19 , Humanos , RNA Viral , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
18.
J Microbiol Methods ; 189: 106320, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478762

RESUMO

Exposure to enteric pathogens in the environment poses a serious risk for infection and disease. The accurate detection and quantification of enteric pathogens in environmental samples is critical for understanding pathogen transport and fate and developing risk assessment models. In this study, we successfully applied TaqMan real-time PCR assays to quantitatively detect five human-specific pathogens (Shigella/EIEC, Salmonella Typhi, Vibrio cholera, Norovirus, and Giardia) in samples from open drains, canals, floodwater, septic tanks, and anaerobic baffled reactors (ABR) collected in Mirpur, Dhaka, Bangladesh from April to October 2019. Overall, the grab and sediment samples showed low inhibition but the ultrafiltration samples collected from open drain had significantly higher (P = 0.0049) degree of PCR inhibition (median Ct = 31.06) compared to the extraction controls (Ct = 28.54). We developed a two-step method to adjust underestimation of pathogen quantities due to PCR inhibition and non-optimum PCR efficiency. Compared to other sample types, ultrafiltration samples demonstrated a wide range of concentration increase (1.0%-182.5%) by pathogens after adjusting for PCR inhibition and non-optimum efficiencies. These quantitative qPCR assays are successful in quantifying multiple enteric pathogens in environmental samples, and the adjustment method would be useful for correcting underestimates of pathogen quantities due to partial PCR inhibition and non-optimum efficiency.


Assuntos
Genoma Bacteriano/genética , Genoma Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Manejo de Espécimes/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Microbiologia Ambiental , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Giardia/genética , Giardia/isolamento & purificação , Ultrafiltração , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Vírus/genética , Vírus/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Águas Residuárias/virologia
19.
Front Microbiol ; 12: 684094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335510

RESUMO

Enteric fever is a severe systemic infection caused by Salmonella enterica serovar Typhi (ST) and Salmonella enterica serovar Paratyphi A (SPA). Detection of ST and SPA in wastewater can be used as a surveillance strategy to determine burden of infection and identify priority areas for water, sanitation, and hygiene interventions and vaccination campaigns. However, sensitive and specific detection of ST and SPA in environmental samples has been challenging. In this study, we developed and validated two methods for concentrating and detecting ST/SPA from wastewater: the Moore swab trap method for qualitative results, and ultrafiltration (UF) for sensitive quantitative detection, coupled with qPCR. We then applied these methods for ST and SPA wastewater surveillance in Kolkata, India and Dhaka, Bangladesh, two enteric fever endemic areas. The qPCR assays had a limit of detection of 17 equivalent genome copies (EGC) for ST and 25 EGC for SPA with good reproducibility. In seeded trials, the Moore swab method had a limit of detection of approximately 0.05-0.005 cfu/mL for both ST and SPA. In 53 Moore swab samples collected from three Kolkata pumping stations between September 2019 and March 2020, ST was detected in 69.8% and SPA was detected in 20.8%. Analysis of sewage samples seeded with known amount of ST and SPA and concentrated via the UF method, followed by polyethylene glycol precipitation and qPCR detection demonstrated that UF can effectively recover approximately 8, 5, and 3 log10 cfu of seeded ST and SPA in 5, 10, and 20 L of wastewater. Using the UF method in Dhaka, ST was detected in 26.7% (8/30) of 20 L drain samples with a range of 0.11-2.10 log10 EGC per 100 mL and 100% (4/4) of 20 L canal samples with a range of 1.02-2.02 log10 EGC per 100 mL. These results indicate that the Moore swab and UF methods provide sensitive presence/absence and quantitative detection of ST/SPA in wastewater samples.

20.
Front Microbiol ; 12: 673604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093494

RESUMO

Phages, such as those infecting Bacteroides spp., have been proven to be reliable indicators of human fecal contamination in microbial source tracking (MST) studies, and the efficacy of these MST markers found to vary geographically. This study reports the application and evaluation of candidate MST methods (phages infecting previously isolated B. fragilis strain GB-124, newly isolated Bacteroides strains (K10, K29, and K33) and recently isolated Kluyvera intermedia strain ASH-08), along with non-source specific somatic coliphages (SOMCPH infecting strain WG-5) and indicator bacteria (Escherichia coli) for identifying fecal contamination pathways in Kolkata, India. Source specificity of the phage-based methods was first tested using 60 known non-human fecal samples from common animals, before being evaluated with 56 known human samples (municipal sewage) collected during both the rainy and dry season. SOMCPH were present in 40-90% of samples from different animal species and in 100% of sewage samples. Phages infecting Bacteroides strain GB-124 were not detected from the majority (95%) of animal samples (except in three porcine samples) and were present in 93 and 71% of the sewage samples in the rainy and dry season (Mean = 1.42 and 1.83 log10PFU/100mL, respectively), though at lower levels than SOMCPH (Mean = 3.27 and 3.02 log10PFU/100mL, respectively). Phages infecting strain ASH-08 were detected in 89 and 96% of the sewage samples in the rainy and dry season, respectively, but were also present in all animal samples tested (except goats). Strains K10, K29, and K30 were not found to be useful MST markers due to low levels of phages and/or co-presence in non-human sources. GB-124 and SOMCPH were subsequently deployed within two low-income neighborhoods to determine the levels and origin of fecal contamination in 110 environmental samples. E. coli, SOMCPH, and phages of GB-124 were detected in 68, 42, and 28% of the samples, respectively. Analyses of 166 wastewater samples from shared community toilets and 21 samples from sewage pumping stations from the same districts showed that SOMCPH were present in 100% and GB-124 phages in 31% of shared toilet samples (Median = 5.59 and <1 log10 PFU/100 mL, respectively), and both SOMCPH and GB-124 phages were detected in 95% of pumping station samples (Median = 5.82 and 4.04 log10 PFU/100 mL, respectively). Our findings suggest that GB-124 and SOMCPH have utility as low-cost fecal indicator tools which can facilitate environmental surveillance of enteric organisms, elucidate human and non-human fecal exposure pathways, and inform interventions to mitigate exposure to fecal contamination in the residential environment of Kolkata, India.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA