Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(14): 6973-6983, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353333

RESUMO

Scalable approaches for synthesis and integration of proton selective atomically thin 2D materials with proton conducting polymers can enable next-generation proton exchange membranes (PEMs) with minimal crossover of reactants or undesired species while maintaining adequately high proton conductance for practical applications. Here, we systematically investigate facile and scalable approaches to interface monolayer graphene synthesized via scalable chemical vapor deposition (CVD) on Cu foil with the most widely used proton exchange polymer Nafion 211 (N211, ∼25 µm thick film) via (i) spin-coating a ∼700 nm thin Nafion carrier layer to transfer graphene (spin + scoop), (ii) casting a Nafion film and cold pressing (cold press), and (iii) hot pressing (hot press) while minimizing micron-scale defects to <0.3% area. Interfacing CVD graphene on Cu with N211 via cold press or hot press and subsequent removal of Cu via etching results in ∼50% lower areal proton conductance compared to membranes fabricated via the spin + scoop method. Notably, the areal proton conductance can be recovered by soaking the hot and cold press membranes in 0.1 M HCl, without significant damage to graphene. We rationalize our finding by the significantly smaller reservoir for cation uptake from Cu etching for the ∼700 nm thin carrier Nafion layer used for spin + scoop transfer compared to the ∼25 µm thick N211 film for hot and cold pressing. Finally, we demonstrate performance in H2 fuel cells with power densities of ∼0.23 W cm-2 and up to ∼41-54% reduction in H2 crossover for the N211|G|N211 sandwich membranes compared to the control N211|N211 indicating potential for our approach in enabling advanced PEMs for fuel cells, redox-flow batteries, isotope separations and beyond.

2.
Nat Commun ; 14(1): 525, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720867

RESUMO

The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7 electrocatalyst. Such a strategy not only produces more valuable anodic product than O2 but also releases H2 at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7 than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(-) can produce H2 at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2 with a cell voltage of only 0.60 V.

3.
ACS Nano ; 16(10): 16003-16018, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36201748

RESUMO

Angstrom-scale pores introduced into atomically thin 2D materials offer transformative advances for proton exchange membranes in several energy applications. Here, we show that facile kinetic control of scalable chemical vapor deposition (CVD) can allow for direct formation of angstrom-scale proton-selective pores in monolayer graphene with significant hindrance to even small, hydrated ions (K+ diameter ∼6.6 Å) and gas molecules (H2 kinetic diameter ∼2.9 Å). We demonstrate centimeter-scale Nafion|Graphene|Nafion membranes with proton conductance ∼3.3-3.8 S cm-2 (graphene ∼12.7-24.6 S cm-2) and H+/K+ selectivity ∼6.2-44.2 with liquid electrolytes. The same membranes show proton conductance ∼4.6-4.8 S cm-2 (graphene ∼39.9-57.5 S cm-2) and extremely low H2 crossover ∼1.7 × 10-1 - 2.2 × 10-1 mA cm-2 (∼0.4 V, ∼25 °C) with H2 gas feed. We rationalize our findings via a resistance-based transport model and introduce a stacking approach that leverages combinatorial effects of interdefect distance and interlayer transport to allow for Nafion|Graphene|Graphene|Nafion membranes with H+/K+ selectivity ∼86.1 (at 1 M) and record low H2 crossover current density ∼2.5 × 10-2 mA cm-2, up to ∼90% lower than state-of-the-art ionomer Nafion membranes ∼2.7 × 10-1 mA cm-2 under identical conditions, while still maintaining proton conductance ∼4.2 S cm-2 (graphene stack ∼20.8 S cm-2) comparable to that for Nafion of ∼5.2 S cm-2. Our experimental insights enable functional atomically thin high flux proton exchange membranes with minimal crossover.

4.
ACS Appl Mater Interfaces ; 14(36): 41328-41336, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36036893

RESUMO

Filtering nanoparticulate aerosols from air streams is important for a wide range of personal protection equipment (PPE), including masks used for medical research, healthcare, law enforcement, first responders, and military applications. Conventional PPEs capable of filtering nanoparticles <300 nm are typically bulky and sacrifice breathability to maximize protection from exposure to harmful nanoparticulate aerosols including viruses ∼20-300 nm from air streams. Here, we show that nanopores introduced into centimeter-scale monolayer graphene supported on polycarbonate track-etched supports via a facile oxygen plasma etch can allow for filtration of aerosolized SiO2 nanoparticles of ∼5-20 nm from air steams while maintaining air permeance of ∼2.28-7.1 × 10-5 mol m-2 s-1 Pa-1. Furthermore, a systematic increase in oxygen plasma etch time allows for a tunable size-selective filtration of aerosolized nanoparticles. We demonstrate a new route to realize ultra-compact, lightweight, and conformal form-factor filters capable of blocking sub-20 nm aerosolized nanoparticles with particular relevance for biological/viral threat mitigation.

5.
Science ; 374(6568): eabd7687, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735245

RESUMO

Atomically thin two-dimensional materials present opportunities for selective transport of subatomic species. The pristine lattice of monolayer graphene and hexagonal boron nitride, although impermeable to helium atoms, allows for transmission of electrons and permits transport of thermal protons and its isotopes. We discuss advances in selective subatomic species transport through atomically thin membranes and their potential for transformative advances in energy storage and conversion, isotope separations, in situ electron microscopy and spectroscopy, and future electronic applications. We outline technological challenges and opportunities for these applications and discuss early adoption in imaging and spectroscopy that are starting to become commercially available, as well as emerging applications in the nuclear industry and future application potential in grid storage, clean/green transportation, environmental remediation, and others.

6.
Nanoscale ; 13(5): 2825-2837, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33508042

RESUMO

Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2-3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0-1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes.

7.
Nano Lett ; 20(8): 5951-5959, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628858

RESUMO

Atomically thin graphene with a high-density of precise subnanometer pores represents the ideal membrane for ionic and molecular separations. However, a single large-nanopore can severely compromise membrane performance and differential etching between pre-existing defects/grain boundaries in graphene and pristine regions presents fundamental limitations. Here, we show for the first time that size-selective interfacial polymerization after high-density nanopore formation in graphene not only seals larger defects (>0.5 nm) and macroscopic tears but also successfully preserves the smaller subnanometer pores. Low-temperature growth followed by mild UV/ozone oxidation allows for facile and scalable formation of high-density (4-5.5 × 1012 cm-2) useful subnanometer pores in the graphene lattice. We demonstrate scalable synthesis of fully functional centimeter-scale nanoporous atomically thin membranes (NATMs) with water (∼0.28 nm) permeance ∼23× higher than commercially available membranes and excellent rejection to salt ions (∼0.66 nm, >97% rejection) as well as small organic molecules (∼0.7-1.5 nm, ∼100% rejection) under forward osmosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...