Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(4): 787-804, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122450

RESUMO

Glycoengineered bacteria have emerged as a cost-effective platform for rapid and controllable biosynthesis of designer conjugate vaccines. However, little is known about the engagement of such conjugates with naïve B cells to induce the formation of germinal centers (GC), a subanatomical microenvironment that converts naïve B cells into antibody-secreting plasma cells. Using a three-dimensional biomaterials-based B-cell follicular organoid system, we demonstrate that conjugates triggered robust expression of hallmark GC markers, B cell receptor clustering, intracellular signaling, and somatic hypermutation. These responses depended on the relative immunogenicity of the conjugate and correlated with the humoral response in vivo. The occurrence of these mechanisms was exploited for the discovery of high-affinity antibodies against components of the conjugate on a time scale that was significantly shorter than for typical animal immunization-based workflows. Collectively, these findings highlight the potential of synthetic organoids for rapidly predicting conjugate vaccine efficacy as well as expediting antigen-specific antibody discovery.

2.
Nat Commun ; 14(1): 464, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709333

RESUMO

Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. However, antigen display on OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. Here, we describe a universal approach for avidin-based vaccine antigen crosslinking (AvidVax) whereby biotinylated antigens are linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen-binding protein (SNAP) comprised of an outer membrane scaffold protein fused to a biotin-binding protein. We show that SNAP-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations are injected in mice, strong antigen-specific antibody responses are observed that depend on the physical coupling between the antigen and SNAP-OMV delivery vehicle. Overall, these results demonstrate AvidVax as a modular platform that enables rapid and simplified assembly of antigen-studded OMVs for application as vaccines against pathogenic threats.


Assuntos
Membrana Externa Bacteriana , Vacinas , Animais , Camundongos , Antígenos , Proteínas de Membrana , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Antígenos de Bactérias , Vacinas Bacterianas
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551980

RESUMO

As a common protein modification, asparagine-linked (N-linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N-glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N-linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein-protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.


Assuntos
Asparagina/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Ribonuclease Pancreático/metabolismo , Anticorpos de Cadeia Única/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Bovinos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Humanos , Polissacarídeos/química , Polissacarídeos/genética , Conformação Proteica , Engenharia de Proteínas , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
4.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536221

RESUMO

Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production.

5.
Adv Biochem Eng Biotechnol ; 175: 355-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-30143807

RESUMO

Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines. Graphical Abstract.


Assuntos
Glicoconjugados , Vacinas , Antibacterianos , Carboidratos , Humanos , Vacinação
6.
Proc Natl Acad Sci U S A ; 115(14): E3106-E3115, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555731

RESUMO

Many microbial pathogens produce a ß-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule, including bacterial, fungal, and protozoan cells. Broadly protective immune responses to this single conserved polysaccharide antigen in animals are possible but only when a deacetylated poly-N-acetyl-d-glucosamine (dPNAG; <30% acetate) glycoform is administered as a conjugate to a carrier protein. Unfortunately, conventional methods for natural extraction or chemical synthesis of dPNAG and its subsequent conjugation to protein carriers can be technically demanding and expensive. Here, we describe an alternative strategy for creating broadly protective vaccine candidates that involved coordinating recombinant poly-N-acetyl-d-glucosamine (rPNAG) biosynthesis with outer membrane vesicle (OMV) formation in laboratory strains of Escherichia coli The glycosylated outer membrane vesicles (glycOMVs) released by these engineered bacteria were decorated with the PNAG glycopolymer and induced high titers of PNAG-specific IgG antibodies after immunization in mice. When a Staphylococcus aureus enzyme responsible for PNAG deacetylation was additionally expressed in these cells, glycOMVs were generated that elicited antibodies to both highly acetylated PNAG (∼95-100% acetate) and a chemically deacetylated dPNAG derivative (∼15% acetate). These antibodies mediated efficient in vitro killing of two distinct PNAG-positive bacterial species, namely S. aureus and Francisella tularensis subsp. holarctica, and mice immunized with PNAG-containing glycOMVs developed protective immunity against these unrelated pathogens. Collectively, our results reveal the potential of glycOMVs for targeting this conserved polysaccharide antigen and engendering protective immunity against the broad range of pathogens that produce surface PNAG.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Superfície/imunologia , Bactérias/imunologia , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/uso terapêutico , Imunização/métodos , Vesículas Transportadoras/imunologia , Animais , Infecções Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico , beta-Glucanas/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(26): E3609-18, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27274048

RESUMO

The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. Here, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Using this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS-specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Vesículas Transportadoras/metabolismo , Tularemia/imunologia , Animais , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Francisella tularensis/genética , Francisella tularensis/metabolismo , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/imunologia , Vesículas Transportadoras/genética , Tularemia/microbiologia , Tularemia/prevenção & controle , Vacinação
8.
Langmuir ; 30(38): 11292-300, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25145981

RESUMO

An emerging field in biomaterials is the creation and engineering of protein surfactants made by recombinant biotechnology. Protein surfactants made by recombinant biotechnology allow for complete control of the molecular weight and chemical sequence of the surfactant. The proteins are monodisperse in molecular weight, and functionalization with bioactive amino acid sequences is straightforwardly achieved through genetic engineering. We modified the naturally occurring amphiphilic plant protein oleosin by truncating a large portion of its central hydrophobic block, creating a soluble triblock surfactant. Additional variants were constructed to eliminate secondary structure and create ionic surfactants. Variants of oleosin self-assembled into spherical micelles with a diameter of ∼21 nm at concentrations above the critical micelle concentration (cmc). We found that the cmc could be manipulated through changes in the protein backbone and was correlated with changes in the protein secondary structure. Micelle size and shape are characterized with dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). Micelles were functionalized with the integrin-binding domain, RGDS, leading to a 2.9-fold increase in uptake in Ovcar-5 cells after 12 h. Oleosin surfactants present a promising platform for micellar assembly because of the ability to precisely modify the protein backbone through molecular biology, allowing for the control over the cmc and the addition of functional domains into the material.


Assuntos
Micelas , Proteínas de Plantas/química , Proteínas Recombinantes/química , Linhagem Celular Tumoral , Humanos , Tamanho da Partícula , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...