Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(12): e84114, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386338

RESUMO

Red-throated Caracaras Ibycter americanus (Falconidae) are specialist predators of social wasps in the Neotropics. It had been proposed that these caracaras possess chemical repellents that allow them to take the brood of wasp nests without being attacked by worker wasps. To determine how caracaras exploit nests of social wasps and whether chemical repellents facilitate predation, we: (1) video recorded the birds attacking wasp nests; (2) analyzed surface extracts of the birds' faces, feet, and feathers for potential chemical repellents; and (3) inflicted mechanical damage on wasp nests to determine the defensive behavior of wasps in response to varying levels of disturbance. During caracara predation events, two species of large-bodied wasps mounted stinging attacks on caracaras, whereas three smaller-bodied wasp species did not. The "hit-and-run" predation tactic of caracaras when they attacked nests of large and aggressive wasps reduced the risk of getting stung. Our data reveal that the predation strategy of caracaras is based on mechanical disturbance of, and damage to, target wasp nests. Caracara attacks and severe experimental disturbance of nests invariably caused wasps to abscond (abandon their nests). Two compounds in caracara foot extracts [sulcatone and iridodial] elicited electrophysiological responses from wasp antennae, and were also present in defensive secretions of sympatric arboreal-nesting Azteca ants. These compounds appear not to be wasp repellents but to be acquired coincidentally by caracaras when they perch on trees inhabited with Azteca ants. We conclude that caracara predation success does not depend on wasp repellents but relies on the absconding response that is typical of swarm-founding polistine wasps. Our study highlights the potential importance of vertebrate predators in the ecology and evolution of social wasps.


Assuntos
Falconiformes , Comportamento de Nidação , Comportamento Predatório , Vespas , Animais , Formigas/metabolismo , Falconiformes/metabolismo , Repelentes de Insetos/análise , Fenômenos Mecânicos , Solventes/química , Gravação em Vídeo
2.
J Econ Entomol ; 105(2): 304-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22606797

RESUMO

We evaluated a year-long treatment regime testing synthetic, 10-component, honey bee, Apis mellifera L. (Hymenoptera: Apidae), brood pheromone (SuperBoost; Contech Enterprises Inc., Delta, BC, Canada) on the productivity and vigor of package bee colonies in the lower Fraser Valley of British Columbia, Canada. Fifty-eight newlyestablished 1.3-kg (3-lb) colonies treated three times with SuperBoost at 5-wk intervals starting 30 April 2009 were compared with 52 untreated control colonies. Treated colonies produced 84.3% more honey than untreated control colonies. By 8 September 2009, SuperBoost-treated colonies had 35.4% more adults than untreated colonies. By 28 September, net survival of treated and control colonies was 72.4 and 67.3%, respectively. On 5 October, treated and control colonies were divided into two additional groups, making up four cohorts: SuperBoost-treated colonies treated again during fall and spring build-up feeding with pollen substitute diet (BeePro, Mann Lake Ltd., Hackensack, MN; TIT); controls that remained untreated throughout the year (CCC); colonies treated with SuperBoost in spring-summer 2009 but not treated thereafter (TCC); and original control colonies treated with SuperBoost during the fall and spring build-up feeding periods (CTT). There was no difference among cohorts in consumption of BeePro during fall feeding, but TTT colonies (including daughter colonies split off from parent colonies) consumed 50.8% more diet than CCC colonies during spring build-up feeding. By 21 April, the normalized percentages of the original number of colonies remaining (dead colonies partially offset by splits) were as follows: CCC, 31.4%; CTT, 43.8%; TCC, 53.59%; and TTT, 80.0%. The net benefit of placing 100 newly established package bee colonies on a year-long six-treatment regime with SuperBoost would be US$6,202 (US$62.02 per colony). We conclude that treatment with SuperBoost enhanced the productivity and survival of package bee colonies and hypothesize that similar results could be achieved with established colonies.


Assuntos
Criação de Abelhas/métodos , Abelhas/fisiologia , Mel , Feromônios/farmacologia , Animais , Criação de Abelhas/economia , Abelhas/crescimento & desenvolvimento , Oregon , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...