Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(12): 5362-5373, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632129

RESUMO

BACKGROUND: The tomato russet mite, Aculops lycopersici, is a major pest in tomato crops, causing damage through leaf and stem browning, defoliation and russeting of fruit. Biological control of this mite on tomato plants is difficult. While several phytoseiid mites feed on the pest, they cannot survive, move, or reproduce on tomato plants due to the presence of glandular trichomes. Pronematus ubiquitus has recently been identified as a biocontrol agent of A. lycopersici in tomato crops, but the predator-prey interaction between these two species is not well studied. In this paper, we present a validated logistic regression predator-prey model based on a 3-year study supplemented with additional datasets. Besides the predator and the prey, this model takes into account an extra generalist predator, Macrolophus pygmaeus, and various climate parameters. RESULTS: The population trend of A. lycopersici is best explained by the presence of the predator P. ubiquitus, the relative humidity and the fact that the crop was lit or unlit using artificial light. P. ubiquitus has proved to be an efficient biocontrol agent of A. lycopersici. For P. ubiquitus the presence of M. pygmaeus, the vapour pressure deficit, the number of light hours and radiation explained the population trend best. For both the predator and the prey density-dependent interactions were identified. Model outcomes are discussed in detail. CONCLUSION: Our study provides insights into the potential use of P. ubiquitus as a biocontrol agent for A. lycopersici in tomato crops in combination with M. pygmaeus. However, we highlight the importance of considering the presence of other predators and environmental conditions when developing integrated pest management strategies. © 2023 Society of Chemical Industry.


Assuntos
Heterópteros , Ácaros , Solanum lycopersicum , Animais , Comportamento Predatório , Controle de Pragas , Controle Biológico de Vetores
2.
Insects ; 13(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555055

RESUMO

Our search for a suitable biological agent to control the tomato russet mite (TRM), Aculops lycopersici, was initiated in 2013. Neoseiulus californicus, Amblyseius andersoni, and Neoseiulus fallacis showed a promising pest reduction potential in a curative control strategy. Although these beneficials had a low survival on tomato and were not able to eradicate the pest, plants did not present typical TRM damage. However, their inability to establish in the tomato crop means that their commercial use would require repeated introductions, making their use too expensive for growers. Other predatory mites in the survey, such as the iolinids Homeopronematus anconai and Pronematus ubiquitus, showed the potential for a preventative strategy as they can establish and reach high densities on tomato with weekly or biweekly provision of Typha angustifolia pollen as a food source. When the tomato crop was adequately colonized by either iolinid, the development of TRM and any damage symptoms could be successfully prevented. The potential of iolinid predatory mites for biological control of eriophyids is discussed.

3.
Pest Manag Sci ; 78(1): 355-361, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34532955

RESUMO

BACKGROUND: The tomato russet mite (TRM), Aculops lycopersici, and powdery mildew (PM), Oidium neolycopersici, are two major problems in tomato cultivation for which no effective biocontrol solutions exist to date. In a greenhouse compartment, we investigated the potential of preventatively establishing the iolinid omnivorous mite Pronematus ubiquitus on potted tomato plants to control both pest and pathogen simultaneously. RESULTS: Using Typha pollen, P. ubiquitus established well on tomato plants, with numbers reaching up to 250 motiles per tomato leaflet. The built-up population was capable of controlling subsequent infestations with both TRM and PM. This represents the first report of an arthropod protecting a crop against pests as well as disease. CONCLUSION: The implementation of P. ubiquitus in tomato crops could be a real game-changer as it eliminates the need for repeated pesticide use or sulphur applications. The finding that arthropods can effectively control diseases opens up new opportunities for biological crop protection. © 2021 Society of Chemical Industry.


Assuntos
Ácaros , Solanum lycopersicum , Animais
4.
Insects ; 12(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34940199

RESUMO

Pronematus ubiquitus (McGregor) is a small iolinid mite that is capable of establishing on tomato plants. Once established, this mite has been shown to control both tomato russet mite, Aculops lycopersici (Tryon) (Acari: Eriophyidae), and tomato powdery mildew (Oidium neolycopersici L. Kiss). In the present study, we explored the effects of a number of alternative food sources on the oviposition rate in the laboratory. First, we assessed the reproduction on food sources that P. ubiquitus can encounter on a tomato crop: tomato pollen and powdery mildew, along with tomato leaf and Typha angustifolia L. In a second laboratory experiment, we evaluated the oviposition rate on two prey mites: the astigmatid Carpoglyphus lactis L. (Acari: Carpoglyphidae) and the tarsonemid Tarsonemus fusarii Cooreman (Acari: Tarsonemidae). Powdery mildew and C. lactis did not support reproduction, whereas tomato pollen and T. fusarii did promote egg laying. However, T. angustifolia pollen resulted in a higher oviposition in both experiments. In a greenhouse trial on individual caged tomato plants, we evaluated the impact of pollen supplementation frequency on the establishment of P. ubiquitus. Here, a pollen addition frequency of every other week was required to allow populations of P. ubiquitus to establish.

5.
Pest Manag Sci ; 77(6): 2690-2696, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33638225

RESUMO

BACKGROUND: Larvae of many hoverfly species prey upon aphids, whereas the adults, by relying on nectar and pollen, contribute to the pollination of many plant species. Despite their great potential for pest control and pollination, important gaps still exist regarding the efficacy of hoverflies in regulating infestations of major aphid pests in augmentative biological control programs. Here, we tested the potential of the commercially available hoverflies Eupeodes corollae and Sphaerophoria rueppellii to regulate populations of the foxglove aphid Aulacorthum solani in sweet pepper. RESULTS: In a semi-field experiment, aphid numbers were 93.2% and 78.4% lower in the E. corollae and S. rueppellii treatments, respectively, compared to the control. Fruit yield was increased by 390% and 361% and seed set by 395% and 399% for E. corollae and S. rueppellii. In a separate laboratory trial, we found that under conditions of limited prey, hoverfly larvae did not complete development, but that larvae of S. rueppellii survived significantly longer than larvae of E. corollae. CONCLUSION: We have shown for the first time that E. corollae and S. rueppellii can reduce infestations of foxglove aphid in sweet pepper. The limited amount of prey, related to the small size of the A. solani colonies, means that hoverfly larvae were often not able to complete development. In practice, repeated releases of hoverflies, possibly in combination with other natural enemies, might be used to achieve effective suppression of A. solani infestations. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Capsicum , Digitalis , Animais , Frutas , Controle Biológico de Vetores , Sementes
6.
Plants (Basel) ; 9(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605063

RESUMO

Diffuse greenhouse glass can increase the production and growth of several crops, by scattering the incoming direct sunlight, which results in a better and more homogeneous light distribution in the crop canopy. Tomato and bell pepper growers in Belgium tend to install low-haze diffuse glass with a double anti-reflection (AR) coating. These glass types have a limited diffuse effect but have a higher light transmission compared to standard float glass. Therefore, tomato growers often increase stem density to maximize light interception. However, a denser crop could counteract the positive effects of diffuse glass on the vertical light distribution. In this study, the effect of low-haze diffuse glass with an AR coating was evaluated for different cropping densities for tomato and bell pepper taking into account the vertical light distribution throughout the crop canopy. Tomato plants with two stem densities (3.33 and 3.75 stems.m-2) and bell pepper plants (with only one stem density of 7.1 stems.m-2) were evaluated in a greenhouse compartment with diffuse and reference float glass during a full growing season. For tomato, a significant production increase of 7.5% was observed under diffuse glass during the second half of the growing season but only for the low stem density. The benefit of diffuse glass appears most relevant during sunny clear skies and on the sun-side-facing rows of the crop. For bell pepper, no significant production increases were noted between regular float or diffuse glass, because a bell pepper crop is typically covered with thermal screens to prevent sunburn on the fruits during sunny days. The vertical light distribution and the usefulness of AR-coated diffuse glass depends on the crop type and should be optimized accordingly by altering the stem density, leaf pruning strategy, row orientation, or crop variety.

7.
Pest Manag Sci ; 76(2): 676-684, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31347277

RESUMO

BACKGROUND: Aphids (Hemiptera: Aphididae) are a problematic pest in global sweet pepper cultivation. Control of aphids often relies on insecticides, leading to widespread resistance. Biological control of aphids is mainly based on releasing specialist natural enemies, but they often fail to control outbreaks. Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a zoophytophagous generalist which attacks several sweet pepper pests, including aphids. Previous research showed that M. pygmaeus is capable of strongly reducing aphid populations in sweet pepper, but complete control was seldom achieved. Sweet pepper plants continue to grow during the season, reaching > 3 m high in Belgian and Dutch greenhouses. Dense foliage and large vertical distance from the flowers to the lower leaves impede the search efficiency of the predator. Leaf pruning may improve aphid predation by M. pygmaeus by increasing the probability of encountering prey. RESULTS: Four and five treatments (foliage range: 100 cm to full length) respectively were tested in a semi-commercial sweet pepper greenhouse in 2017 and 2018. Aphid populations in pruned treatments grew more slowly than in the control and M. pygmaeus was eventually able to control aphids in all pruned treatments in 2018. There was no difference in aphid control between the pruned treatments. Sweet pepper production was lower in the treatments with the shortest foliage lengths. CONCLUSION: Leaf pruning up to 160 or 190 cm foliage length improves aphid control by M. pygmaeus in sweet pepper without affecting production. © 2019 Society of Chemical Industry.


Assuntos
Afídeos , Capsicum , Animais , Heterópteros , Controle Biológico de Vetores , Folhas de Planta
8.
Front Microbiol ; 8: 447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382027

RESUMO

Rhizogenic Agrobacterium biovar 1 is the causative agent of hairy root disease (HRD) in the hydroponic cultivation of tomato and cucumber causing significant losses in marketable yield. In order to prevent and control the disease chemical disinfectants such as hydrogen peroxide or hypochlorite are generally applied to sanitize the hydroponic system and/or hydroponic solution. However, effective control of HRD sometimes requires high disinfectant doses that may have phytotoxic effects. Moreover, several of these chemicals may be converted to unwanted by-products with human health hazards. Here we explored the potential of beneficial bacteria as a sustainable means to control HRD. A large collection of diverse bacterial genera was screened for antagonistic activity against rhizogenic Agrobacterium biovar 1 using the agar overlay assay. Out of more than 150 strains tested, only closely related Paenibacillus strains belonging to a particular clade showed antagonistic activity, representing the species P. illinoisensis, P. pabuli, P. taichungensis, P. tundrae, P. tylopili, P. xylanexedens, and P. xylanilyticus. Assessment of the spectrum of activity revealed that some strains were able to inhibit the growth of all 35 rhizogenic agrobacteria strains tested, while others were only active against part of the collection, suggesting a different mode of action. Preliminary characterization of the compounds involved in the antagonistic activity of two closely related Paenibacillus strains, tentatively identified as P. xylanexedens, revealed that they are water-soluble and have low molecular weight. Application of a combination of these strains in greenhouse conditions resulted in a significant reduction of HRD, indicating the great potential of these strains to control HRD.

9.
Pest Manag Sci ; 72(7): 1350-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26419416

RESUMO

BACKGROUND: The zoophytophagous predator Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a successful biocontrol agent against several pest species in protected tomato crops. This predator is considered to be harmless for the crop. However, in recent years, Heteroptera feeding punctures on tomato fruit in Belgian and Dutch greenhouses have been misinterpreted as Pepino mosaic virus (PepMV) symptoms. In this study, three hypotheses were tested: (1) M. pygmaeus causes fruit damage that increases with population density and surpasses economic thresholds; (2) the presence of prey or alternative prey reduces the damage; (3) an infection of the tomato plants by PepMV triggers or aggravates M. pygmaeus fruit damage. RESULTS: At increasing M. pygmaeus densities, the severity of fruit damage increased from a few dimples towards yellowish discoloration and deformed fruits. A correlation with an infection with PepMV was found. The severity of the symptoms was independent of the presence of prey. A minimum economic density threshold was estimated at 0.32 M. pygmaeus per leaf. CONCLUSION: M. pygmaeus can cause economic damage to tomato fruits at densities common in practice. An infection of the plants with PepMV enhances fruit symptoms significantly. Interacting plant defence responses are most likely the key to explaining this, although confirmation is required. © 2015 Society of Chemical Industry.


Assuntos
Solanum lycopersicum , Tymoviridae/patogenicidade , Animais , Produção Agrícola , Frutas/parasitologia , Frutas/virologia , Hemípteros , Solanum lycopersicum/parasitologia , Solanum lycopersicum/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Densidade Demográfica
10.
Pest Manag Sci ; 72(9): 1702-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26620187

RESUMO

BACKGROUND: Previous studies have indicated the control potential of entomopathogenic nematodes (EPNs) against Tuta absoluta. Here, the potential of Steinernema feltiae, S. carpocapsae and Heterorhabditis bacteriophora is studied when applied against larvae of T. absoluta inside leaf mines in tomato leaf discs by means of an automated spray boom. RESULTS: The studied EPN species were effective against all four larval instars of T. absoluta but caused higher mortality in the later instars (e.g. fourth instar: 77.1-97.4% mortality) than in the first instars (36.8-60.0% mortality). Overall, S. feltiae and S. carpocapsae yielded better results than H. bacteriophora. Steinernema carpocapsae and H. bacteriophora performed better at 25 °C (causing 55.3 and 97.4% mortality respectively) than at 18 °C (causing 12.5 and 34.2% mortality respectively), whereas S. feltiae caused 100% mortality at both temperatures. Under optimal spraying conditions and with the use of Addit and Silwet L-77 adjuvants, a reduced dosage of 6.8 infective juveniles (IJs) cm(-2) yielded equally good control as a recommended dosage of 27.3 IJs cm(-2) . CONCLUSION: Under laboratory conditions, S. feltiae and S. carpocapsae showed good potential against the larvae of T. absoluta inside tomato leaf mines. Results need to be confirmed in greenhouse experiments. © 2015 Society of Chemical Industry.


Assuntos
Mariposas/parasitologia , Controle Biológico de Vetores/métodos , Rabditídios/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/parasitologia , Solanum lycopersicum/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento
11.
FEMS Microbiol Ecol ; 91(8): fiv081, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26187479

RESUMO

Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium.


Assuntos
Agrobacterium/classificação , Produtos Agrícolas/microbiologia , Cucurbitaceae/microbiologia , Variação Genética , Raízes de Plantas/microbiologia , Solanum lycopersicum/microbiologia , Agrobacterium/genética , Agrobacterium/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Filogenia , Doenças das Plantas/microbiologia , Plasmídeos/genética , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...