Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(1): 68-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234488

RESUMO

Several bee species are experiencing significant population declines. As bees exclusively rely on pollen for development and survival, such declines could be partly related to changes in their host plant abundance and quality. Here, we investigate whether generalist bumblebee species, with stable population trends over the past years, adapted their diets in response to changes in the distribution and chemical quality of their pollen resources. We selected five common species of bumblebee in NW Europe for which we had a precise description of their pollen diet through two time periods ('prior to 1950' and '2004-2005'). For each species, we assessed whether the shift in their pollen diet was related with the changes in the suitable area of their pollen resources. Concurrently, we evaluated whether the chemical composition of pollen resources changed over time and experimentally tested the impact of new major pollen species on the development of B. terrestris microcolonies. Only one species (i.e. B. lapidarius) significantly included more pollen from resources whose suitable area expanded. This opportunist pattern could partly explain the expansion of B. lapidarius in Europe. Regarding the temporal variation in the chemical composition of the pollen diet, total and essential amino acid contents did not differ significantly between the two time periods while we found significant differences among plant species. This result is driven by the great diversity of resources used by bumblebee species in both periods. Our bioassay revealed that the shift to new major pollen resources allowed microcolonies to develop, bringing new evidence on the opportunist feature of bumblebee in their diets. Overall, this study shows that the response to pollen resource drift varies among closely related pollinators, and a species-rich plant community ensures generalist species to select a nutrient-rich pollen diet.


Assuntos
Abelhas , Comportamento Alimentar , Pólen , Animais , Dieta , Europa (Continente) , Plantas
2.
PLoS One ; 11(12): e0168462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005943

RESUMO

Bumblebees (i.e. Bombus genus) are major pollinators of flowering wild plants and crops. Although many species are currently in decline, a number of them remain stable or are even expanding. One factor potentially driving changes in bumblebee distribution is the suitability of plant communities. Actually, bees probably have specific nutritional requirements that could shape their floral choices and constraint them in the current context of global change. However, most studies primarily focus on one bumblebee species at a time, making comparative studies scarce. Herein we performed comparative bioassays on three bumblebee species (i.e. Bombus hypnorum, B. pratorum and B. terrestris) fed on three different pollen diets with distinct nutritive content (Cistus, Erica and Salix pollen diets). Micro-colony performance was compared through different developmental and resource collection parameters for understanding the impact of change in pollen diet on different bumblebee species. The evidence suggests that B. terrestris is by far the most competitive species because of its performance compared to the other species, regardless of pollen diet. Our results also highlight a Bombus species effect as pollen diet impacts the micro-colonies in different ways according to the actual bumblebee species. Such interspecific variation in Bombus performance in response to a dietetic change underlines the importance of considering different bumblebee species in mitigation strategies. Such comparative studies are good advice for developing appropriate suites of plant species that can benefit threatened species while supporting stable or expanding ones.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Pólen/química , Pólen/metabolismo , Polinização/fisiologia , Animais , Dieta , Especificidade da Espécie
3.
J Econ Entomol ; 109(1): 25-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26385047

RESUMO

The use of Bombus terrestris L. commercial colonies for outdoor and greenhouse crop pollination is currently widespread. Colony breeding includes bumblebee feeding, mostly by using the honeybee pollen loads of diverse palynological composition. Because the chemical content of pollen is highly variable, the choice of commercial blend should not be random but has to be carefully selected to ensure the optimal development of workers and then pollination efficacy. In this work, we compared the impact of three common commercial blends on the development of bumblebee microcolonies, namely, Actinidia deliciosa L., Cistus sp., and Salix sp. We focus on amino acids (i.e., composition and amount), as they are currently used as an indicator of diet performance. Five parameters were used to determine microcolonies growth rate: 1) number of eggs, 2) number of alive larvae, 3) number of ejected larvae, 4) number of pupae, and 5) total number of offspring. Syrup collection was also monitored to estimate energetic requirement for colony growth. Results revealed that the three commercial blends chemically differed in their amino acid contents, with those displaying higher concentrations (i.e., Salix sp. and A. deliciosa) accelerating microcolony development along with an increase of syrup collection. The advantages of rearing bumblebee commercial colonies using a pollen diet with an optimal amino acid content are discussed.


Assuntos
Aminoácidos/metabolismo , Abelhas/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Abelhas/crescimento & desenvolvimento , Dieta , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pólen/química , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
4.
PLoS One ; 9(1): e86209, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465963

RESUMO

Larvae and imagos of bees rely exclusively on floral rewards as a food source but host-plant range can vary greatly among bee species. While oligolectic species forage on pollen from a single family of host plants, polylectic bees, such as bumblebees, collect pollen from many families of plants. These polylectic species contend with interspecific variability in essential nutrients of their host-plants but we have only a limited understanding of the way in which chemicals and chemical combinations influence bee development and feeding behaviour. In this paper, we investigated five different pollen diets (Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia) to determine how their chemical content affected bumblebee colony development and pollen/syrup collection. Three compounds were used to characterise pollen content: polypeptides, amino acids and sterols. Several parameters were used to determine the impact of diet on micro-colonies: (i) Number and weight of larvae (total and mean weight of larvae), (ii) weight of pollen collected, (iii) pollen efficacy (total weight of larvae divided by weight of the pollen collected) and (iv) syrup collection. Our results show that pollen collection is similar regardless of chemical variation in pollen diet while syrup collection is variable. Micro-colonies fed on S. aucuparia and C. scoparius pollen produced larger larvae (i.e. better mates and winter survivors) and fed less on nectar compared to the other diets. Pollen from both of these species contains 24-methylenecholesterol and high concentrations of polypeptides/total amino acids. This pollen nutritional "theme" seems therefore to promote worker reproduction in B. terrestris micro-colonies and could be linked to high fitness for queenright colonies. As workers are able to selectively forage on pollen of high chemical quality, plants may be evolutionarily selected for their pollen content, which might attract and increase the degree of fidelity of generalist pollinators, such as bumblebees.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Pólen/metabolismo , Aminoácidos/metabolismo , Animais , Abelhas/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Dieta , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Peptídeos/metabolismo , Polinização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...