Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17082, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484272

RESUMO

Glioma is an intra-cranial malignancy with the origin of neural stem cells or precursor cells, the most prevalent brain tumor worldwide. Glioblastoma, the fourth-grade glioma, is a common brain tumor whose incidence rate is 5-7 people per 100,000 populations annually. Despite their high mortality rate, all efforts for treatment have yet to achieve any desirable clinical outcome. The Wnt signaling pathway is a conserved pathway among species that seems to be a candidate for cancer therapy by its inhibition. Metformin is a known inhibitor of the Wnt signaling pathway. Its effects on glioma treatment have been observed in cellular, animal, and clinical experiments. Nanoerythrosomes are drug carriers obtained from the cellular membrane of red blood cells in nano size which can offer several characteristics to deliver metformin to brain tumors. They are good at loading and carrying hydrophilic drugs, they can protect metformin from its metabolizing enzymes, which are present in the blood-brain barrier, and they can extend the period of metformin presence in circulation. In this study, nanoerythrosomes were prepared by using the hypotonic buffer. They had particle sizes in the range of 97.1 ± 34.2 nm, and their loading efficiency and loading capacity were 72.6% and 1.66%, respectively. Nanoerythrosomes could reserve metformin in their structure for a long time, and only 50% of metformin was released after 30 h. Moreover, they released metformin at a low and approximately constant rate. Besides, nanoerythrosomes could tolerate various kinds of stress and maintain most of the drug in their structure. Altogether, nanoerythrosome can be a suitable drug delivery system to deliver therapeutic amounts of metformin to various tissues.

2.
Adv Protein Chem Struct Biol ; 129: 51-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35305725

RESUMO

Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Imunoterapia , Masculino , Papillomaviridae , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/uso terapêutico , Microambiente Tumoral , Neoplasias do Colo do Útero/prevenção & controle
3.
Int Immunopharmacol ; 99: 108021, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34352567

RESUMO

Since the beginning of vaccination programs against COVID-19 in different countries, several populations such as patients with specific immunological conditions have been considered as the priorities for immunization. In this regard, patients with autoimmune diseases or those receiving immunosuppressive agents and anti-cancer therapies, need special attention. However, no confirmed data is presently available regarding COVID-19 vaccines in these populations due to exclusion from the conducted clinical trials. Given the probable suppression or over-activation of the immune system in such patients, reaching a consensus for their vaccination is critical, besides gathering data and conducting trials, which could probably clarify this matter in the future. In this review, besides a brief on the available COVID-19 vaccines, considerations and available knowledge about administering similar vaccines in patients with cancer, hematopoietic stem cell transplantation, solid organ transplantation, multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatologic and dermatologic autoimmune disorders are summarized to help in decision making. As discussed, live-attenuated viruses, which should be avoided in these groups, are not employed in the present COVID-19 vaccines. Thus, the main concern regarding efficacy could be met using a potent COVID-19 vaccine. Moreover, the vaccination timing for maximum efficacy could be decided according to the patient's condition, indicated medications, and the guides provided here. Post-vaccination monitoring is also advised to ensure an adequate immune response. Further studies in this area are urgently warranted.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Hospedeiro Imunocomprometido/imunologia , Humanos , Doenças do Sistema Imunitário/imunologia , Imunização , SARS-CoV-2 , Vacinação
4.
Int Immunopharmacol ; 91: 107245, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348292

RESUMO

Coronavirus disease 2019 (COVID-19) is an infective disease generated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the pandemic urgency and lack of an effective cure for this disease, drug repurposing could open the way for finding a solution. Lots of investigations are ongoing to test the compounds already identified as antivirals. On the other hand, induction of type I interferons are found to play an important role in the generation of immune responses against SARS-CoV-2. Therefore, it was opined that the antivirals capable of triggering the interferons and their signaling pathway, could rationally be beneficial for treating COVID-19. On this basis, using a database of antivirals, called drugvirus, some antiviral agents were derived, followed by searches on their relevance to interferon induction. The examined list included drugs from different categories such as antibiotics, immunosuppressants, anti-cancers, non-steroidal anti-inflammatory drugs (NSAID), calcium channel blocker compounds, and some others. The results as briefed here, could help in finding potential drug candidates for COVID-19 treatment. However, their advantages and risks should be taken into account through precise studies, considering a systemic approach. Even though the adverse effects of some of these drugs may overweight their benefits, considering their mechanisms and structures may give a clue for designing novel drugs in the future. Furthermore, the antiviral effect and IFN-modifying mechanisms possessed by some of these drugs might lead to a synergistic effect against SARS-CoV-2, which deserve to be evaluated in further investigations.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Interferon Tipo I/farmacologia , Interferon Tipo I/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/virologia , Humanos , Pandemias/prevenção & controle
5.
ACS Chem Neurosci ; 11(24): 4060-4072, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33251792

RESUMO

Apolipoprotein J (ApoJ), or clusterin, is one of the main apolipoproteins in the brain. It is synthesized and released from astrocytes in a healthy brain, and its expression increases in neurodegenerative disorders. Genetic evidence has suggested an association between ApoJ polymorphism and the risk of Alzheimer's disease (AD)-it is now considered the third main genetic risk factor for late-onset AD. However, the role of ApoJ overexpression in the state of disorder, toxicity, or protection is not yet clear. Since ApoJ plays different roles in AD, we review the function of ApoJ using different cell signaling pathways in AD and outline its paradoxical roles in AD. ApoJ helps in amyloid-beta (Aß) clearance. Vice versa, ApoJ gene knock-out causes fibrillary Aß reduction and prevents Aß-induced neuron cell death. Understanding ApoJ, through various cellular signaling pathways, creates a new perspective on AD's cellular principles. The overall message is that ApoJ can be a valuable tool in controlling AD.


Assuntos
Doença de Alzheimer , Clusterina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Apolipoproteínas E , Clusterina/genética , Clusterina/metabolismo , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...