Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(18): e2207635, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119466

RESUMO

This research is taking the first steps toward applying a 2D dragonfly wing skeleton in the design of an airplane wing using artificial intelligence. The work relates the 2D morphology of the structural network of dragonfly veins to a secondary graph that is topologically dual and geometrically perpendicular to the initial network. This secondary network is referred as the reciprocal diagram proposed by Maxwell that can represent the static equilibrium of forces in the initial graph. Surprisingly, the secondary graph shows a direct relationship between the thickness of the structural members of a dragonfly wing and their in-plane static equilibrium of forces that gives the location of the primary and secondary veins in the network. The initial and the reciprocal graph of the wing are used to train an integrated and comprehensive machine-learning model that can generate similar graphs with both primary and secondary veins for a given boundary geometry. The result shows that the proposed algorithm can generate similar vein networks for an arbitrary boundary geometry with no prior topological information or the primary veins' location. The structural performance of the dragonfly wing in nature also motivated the authors to test this research's real-world application for designing the cellular structures for the core of airplane wings as cantilever porous beams. The boundary geometry of various airplane wings is used as an input for the design proccedure. The internal structure is generated using the training model of the dragonfly veins and their reciprocal graphs. One application of this method is experimentally and numerically examined for designing the cellular core, 3D printed by fused deposition modeling, of the airfoil wing; the results suggest up to 25% improvements in the out-of-plane stiffness. The findings demonstrate that the proposed machine-learning-assisted approach can facilitate the generation of multiscale architectural patterns inspired by nature to form lightweight load-bearable elements with superior structural properties.


Assuntos
Inteligência Artificial , Odonatos , Animais , Asas de Animais/anatomia & histologia , Voo Animal , Odonatos/anatomia & histologia , Aprendizado de Máquina
2.
Adv Sci (Weinh) ; 9(33): e2202883, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253119

RESUMO

Using multistable mechanical metamaterials to develop deployable structures, electrical devices, and mechanical memories raises two unanswered questions. First, can mechanical instability be programmed to design sensors and memory devices? Second, how can mechanical properties be tuned at the post-fabrication stage via external stimuli? Answering these questions requires a thorough understanding of the snapping sequences and variations of the elastic energy in multistable metamaterials. The mechanics of deformation sequences and continuous force/energy-displacement curves are comprehensively unveiled here. A 1D array, that is chain, of bistable cells is studied to explore instability-induced energy release and snapping sequences under one external mechanical stimulus. This method offers an insight into the programmability of multistable chains, which is exploited to fabricate a mechanical sensor/memory with sampling (analog to digital-A/D) and data reconstruction (digital to analog-D/A) functionalities operating based on the correlation between the deformation sequence and the mechanical input. The findings offer a new paradigm for developing programmable high-capacity read-write mechanical memories regardless of thei size scale. Furthermore, exotic mechanical properties can be tuned by harnessing the attained programmability of multistable chains. In this respect, a transversely multistable mechanical metamaterial with tensegrity-like bistable cells is designed to showcase the tunability of chirality.

3.
Adv Mater ; 33(42): e2102423, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467581

RESUMO

Developing bistable metamaterials has recently offered a new design paradigm for deployable structures and reusable dampers. While most bistable mechanisms possess inclined/curved struts, a new 3D multistable shellular metamaterial is developed by introducing delicate perforations on the surface of Schwarz's Primitive shellular, integrating the unique properties of shellular materials such as high surface area, stiffness, and energy absorption with the multistability concept. Denoting the fundamental snapping part by motif, certain shellular motifs with elliptical perforations exhibit mechanical bistability. To bring the concept of multistability to a single motif, multistable shellular motifs are developed by introducing multilayer staggered perforations that form hinges and facilitate local instability. Adopting an n-layer staggered perforation (n hinges) design leads to a maximum 2n-1 stable states within one shellular motif during loading and unloading. Three-directional multistable shellulars are attained by extending the perforation design in three orthogonal directions. Harnessing snap-through and snap-back behaviors and self-contact, the introduced multistable perforated shellulars exhibit strong rigidity both in loading and unloading, and enhanced energy dissipation. The introduced design strategy opens up new horizons for creating multidirectional multistable metamaterials with load bearing capabilities for applications in soft robotics, shape-morphing architectures, and reusable and deployable energy absorbers/dampers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...